
Approximate Dynamic Programming for Two-Player Zero-Sum Markov Games

Julien Perolat(1) JULIEN.PEROLAT@ED.UNIV-LILLE1.FR
Bruno Scherrer(2) BRUNO.SCHERRER@INRIA.FR
Bilal Piot(1) BILAL.PIOT@UNIV-LILLE3.FR
Olivier Pietquin(1,3) OLIVIER.PIETQUIN@UNIV-LILLE1.FR
(1)Univ. Lille, CRIStAL, SequeL team, France
(2)Inria, Villers-lès-Nancy, F-54600, France
(3)Institut Universitaire de France (IUF), France

Abstract
This paper provides an analysis of error propaga-
tion in Approximate Dynamic Programming ap-
plied to zero-sum two-player Stochastic Games.
We provide a novel and unified error propaga-
tion analysis in Lp-norm of three well-known al-
gorithms adapted to Stochastic Games (namely
Approximate Value Iteration, Approximate Pol-
icy Iteration and Approximate Generalized Pol-
icy Iteration). We show that we can achieve a
stationary policy which is 2γε+ε′

(1−γ)2 -optimal, where
ε is the value function approximation error and ε′

is the approximate greedy operator error. In addi-
tion, we provide a practical algorithm (AGPI-Q)
to solve infinite horizon γ-discounted two-player
zero-sum Stochastic Games in a batch setting. It
is an extension of the Fitted-Q algorithm (which
solves Markov Decisions Processes from data)
and can be non-parametric. Finally, we demon-
strate experimentally the performance of AGPI-
Q on a simultaneous two-player game, namely
Alesia.

1. Introduction
A wide range of complex problems (e.g. computer net-
works, human-computer interfaces, games as chess or
checkers) can be addressed as multi-agent systems. This
is why Multi-Agent Reinforcement Learning (MARL) (Bu-
soniu et al., 2008) has received a growing interest in the last
few years. While, in decision theory, Markov Decision Pro-
cesses (MDPs) (Puterman, 1994) are widely used to control
a single agent in a complex environment, Markov Games
(MGs) (also named Stochastic Games (SGs)) (Shapley,

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

1953) are an extension of this formal framework to describe
multi-agent systems. As for MDPs, SGs constitute a model
for MARL (Littman, 1994) and have been largely studied
in past years (Hu & Wellman, 2003; Greenwald et al., 2003;
Bowling & Veloso, 2001). In some sense, SGs are a gener-
alization of both the game-theory and the MDP frameworks
where the agents may have different pay-offs (rewards in
the MDP vocabulary) they aim at maximizing.

This paper contributes to solving large scale games with
unknown dynamics. Especially, it addresses the prob-
lem of finding the Nash equilibrium for infinite horizon
γ-discounted two-player zero-sum SGs in an approximate
fashion, possibly from batch data. SGs are modeled as
extensions of MDPs where Dynamic Programming (DP)
commonly serves as a basis to a wide range of practical so-
lutions (Puterman, 1994). However, when the size of the
game is too large or when its dynamics is not perfectly
known, exact solutions cannot be computed. In that case,
Approximate Dynamic Programming (ADP) approaches
are preferred as for MDPs (Bertsekas, 1995). Because DP
relies on an iterative schema, interleaving Value Function
Approximation and Greedy Operator Approximations, two
types of errors (corresponding to each source of approxi-
mation) are introduced and can accumulate over iterations
when passing to ADP.

More specifically, this paper provides a theoretical error
propagation analysis in Lp-norm of well-known ADP al-
gorithms applied to games such as Approximate Value It-
eration (AVI), Approximate Policy Iteration (API) and Ap-
proximate Generalized Policy Iteration (AGPI) (described
later). It also proposes a novel algorithm, named Approx-
imate Generalized Policy Iteration-Q (AGPI-Q) extending
Fitted-Q iteration (Ernst et al., 2005) which is further ana-
lyzed in terms of error and complexity. AGPI-Q is evalu-
ated on a simultaneous two-player game, namely Alesia.

Approximate Dynamic Programming for Two-Player Zero-Sum Markov Games

1.1. Dynamic Programming techniques for MDP

ADP for MDPs has been the topic of many studies
these last two decades. Bounds in L∞ can be found
in (Bertsekas, 1995) while Lp-norm ones were published
in (Munos & Szepesvári, 2008) and (Farahmand et al.,
2010). Because approximations often come from the use of
supervised-learning algorithms, Lp-norm bounds are a sig-
nificant improvement over L∞ ones. Indeed, they can rely
on upper bounds provided in the supervised learning liter-
ature to estimate the overall error on the learnt policy. For
a unified analysis of PI, VI and MPI in Lp-norm see Scher-
rer et al. (2012). It allows evaluating several practical al-
gorithms like Fitted-Q iteration (Ernst et al., 2005; Antos
et al., 2008), Classification-based MPI (Lagoudakis & Parr,
2003b; Lazaric et al., 2010; Gabillon et al., 2011) and LSPI
(Lagoudakis & Parr, 2003a).

1.2. Dynamic Programming techniques for Stochastic
Games

Zero-sum two-player γ-discounted SGs are quite close to
γ-discounted MDPs. In fact, the development of DP tech-
niques for SGs has followed closely the development of
DP for MDPs (Shapley, 1953). Most of these algorithms
are detailed in Patek (1997) in the framework of Stochas-
tic Shortest Path Games (SSPG). Zero-sum two-player dis-
counted SG is a subclass of SSPG. Similar algorithms exist
to solve those games including PI (Patek, 1997), VI (Shap-
ley, 1953) and MPI (called also Generalized Policy Itera-
tion (GPI) (Patek, 1997) in the context of SSPG). Yet, there
has been very little attention paid to ADP for SGs after
Patek’s work except from Lagoudakis & Parr (2002). To
our knowledge, no analyses of the approximate version of
those algorithms exist in Lp-norm.

2. Framework
A SG is a generalization of an MDP to a n-player setting.
Each player has a control on the SG through a set of ac-
tions. At each step of the game, all players simultaneously
choose an action. The reward each player gets after one
step depends on the state and on the joint action of all play-
ers. Furthermore, the dynamics of the SG may depend on
the state and on the actions of all players.

Each player is interested in maximizing some criterion on
this sequence of rewards. Here, we will consider the prob-
lem of computing the minimax equilibrium in a two-player
zero-sum SG where each player tries to maximize his own
value, defined as the expected γ-discounted cumulative re-
ward. The value attained at the minimax equilibrium is the
optimal value. In the case of simultaneous games, the ma-
jor difference between those games and MDPs is that each
player may have to randomize his strategies to reach this

equilibrium (Von Neumann, 1947).

2.1. Two-Player Zero-Sum Discounted Stochastic
Games

A two-player γ-discounted SG can be considered as a
tuple (S, (A1(s))s∈S , (A

2(s))s∈S , p, r, γ) where S is the
state space1, A1(s) is the finite set of actions player 1 can
play in state s, A2(s) is the finite set of actions player 2
can play in state s, p(s′|s, a1, a2) with a1 ∈ A1(s) and
a2 ∈ A2(s)) is the probability transition from state s to
state s′, r(s, a1, a2) with a1 ∈ A1(s) and a2 ∈ A2(s))
is the reward of both players bounded by Rmax, γ is the
discount factor. A strategy πi, where i ∈ {1, 2}, maps a
state s ∈ S to a probability distribution πi(.|s) over Ai(s).
Those strategies are named policies in the MDP literature.
We will adopt both vocabulary indifferently.

The stochastic kernel characterising the tran-
sition of the game is Pπ1,π2 (s′|s) =
Ea1∼π1(.|s),a2∼π2(.|s)[p(s

′|s, a1, a2)]. The stochas-
tic kernel is the probability to go from s to s′ when
player 1 is playing strategy π1 and player 2 is play-
ing strategy π2. The reward function will be noted
rπ1,π2 = Ea1∼π1(.|s),a2∼π2(.|s)[r(s, a

1, a2)]. This quan-
tity represents the reward each player can expect while
player 1 plays π1 and player 2 plays π2.

One can see zero-sum two-player games as two players
maximizing opposite rewards. Another way to see it is
that the goal of player 1 is to maximize his cumulated γ-
discounted reward while the goal of player 2 is to minimize
it. From now on, we will note µ the policy of the maximizer
and ν the policy of the minimizer.

Let vµ,ν(s) = E[
+∞∑
t=0

γtrµ,ν (st)|s0 = s, st+1 ∼

Pµ,ν (.|st)] be the cumulative reward if the players 1 and
2 respectively use the stationary strategies µ and ν. The
value function vµ,ν maps the state s to its value vµ,ν(s).

2.2. Bellman Operators

Let us define the following five operators on value v:

Tν,µ v = rµ,ν + γPµ,ν v

Tµ v = min
ν
Tµ,ν v

T v = max
µ
Tµ v

T̂ν v = max
µ
Tµ,ν v

T̂ v = min
ν
T̂ν v

Here µ and ν are random policies. The min and max are
well defined because µ and ν are in compact sets since we
are considering finite sets of actions. All those operators
are contractions in L∞-norm with constant γ. We have the

1We will only consider a finite state space. The case where the
state space is continuous is beyond the scope of this paper.

Approximate Dynamic Programming for Two-Player Zero-Sum Markov Games

following remarkable property (Patek, 1997):

∀v, T̂ v = T v (1)

Equation (1) is a consequence of von Neumann’s Minimax
theorem (Von Neumann, 1947; Patek, 1997).

2.3. Minimax Equilibrium

In the setting of zero-sum two-player SGs, notions of min-
imax equilibrium and of Nash equilibrium are equivalent.
In this case, the optimal value of the game is:

v∗ = min
ν

max
µ

vµ,ν = max
µ

min
ν
vµ,ν (2)

The existence of v∗ is proved in Patek (1997) for a more
general class of games. This value can be achieved using
mixed stationary strategies (Patek, 1997). Equation (2) is
a consequence of Equation (1) and of the contraction prop-
erty. The value v∗ is the unique fixed point of the operator
T . We will note vµ = infν vµ,ν the fixed point of operator
Tµ . An optimal counter strategy against µ is any strategy
ν satisfying vµ,ν = vµ.

2.4. Policy Iteration, Value Iteration and Generalized
Policy Iteration

The three algorithms we intend to analyse are VI, PI and
GPI. They all share the same greedy step. A strategy µ is
greedy with respect to some value v (noted µ ∈ G(v)) when
T v = Tµ v = minν Tµ,ν v.

Remark 1. In practice, trying to find µ greedy with respect
to a value v means trying to maximize (Tµ v)(s) for each
state s. Let us fix some state s; we try to find

(max
µ

min
ν
Tµ,ν v)(s) =

max
µ(.|s)

min
ν(.|s)

E a∼µ(.|s),a′∼ν(.|s),
Σ∼Pµ,ν (.|s)

[r(s, a, a′) + γv(Σ)]

For a constant state s, this is equivalent to trying to find
the minimax equilibrium of a matrix game. The matrix of
the game with stochastic reward is defined by (r(s, a, a′) +
γv(Σa,a′))a∈A1(s),a′∈A2(s) where Σa,a′ ∼ p(.|s, a, a′).
From the expectation of this matrix, the minimax equilib-
rium can be computed with linear programming.

In the case of turn-based games, finding a greedy policy is
much simpler. Indeed, since at each state only one player
controls the SG, finding a greedy strategy is reduced to find-
ing a maximum over the actions of player 1.

The algorithms differ by the way they do the evaluation
step. We describe them by showing how they work from
iteration k to iteration k + 1. Value Iteration (VI) iterates
as follows:

vk+1 = T vk.

This can equivalently be written as follows:

µk+1 = G(vk)

vk+1 = Tµk+1
vk.

Policy Iteration (PI) iterates as follows

µk+1 = G(vk)

vk+1 = vµk+1
= (Tµk+1

)+∞vk.

Finally, Generalized Policy Iteration (GPI) iterates in a
way that interpolates between VI and PI:

µk+1 = G(vk)

vk+1 = (Tµk+1
)mvk.

It is clear that GPI generalizes VI and PI. In particular,
the error propagation bounds for VI (when m = 1) and
PI (when m = ∞) will follow from the analysis we shall
provide for GPI.

2.5. Example and Special Cases

In this paper, we consider the game Alesia (Meyer et al.,
1997), that is a two-player zero-sum simultaneous game.
Both players control a token in the center of a five box
board. At the beginning each player has a finite budget
n. At each turn, every one has to bet at least 1 if his own
remaining budget is not 0. The goal of each player is to
put the token on his side of the board. At each turn the to-
ken moves toward the objective of the player who bets the
most (in case of equality the token doesn’t move). The one
wining is the one who can push his token outside of the
board.

This game can be modelled as follows. The state space S is
a triplet (token position ∈ {1, ..., 5}, budget of player 1 ∈
{0, ..., n}, budget of player 2 ∈ {0, ..., n}) and an absorb-
ing state Ω where the players fall at the end of the game.
The action space in state (s, u, v) is A1((s, u, v)) for
player 1. If u 6= 0, then A1((s, u, v)) = {1, ..., u}
else A1((s, u, v)) = {0}. For player 2, if v 6= 0, then
A2((s, u, v)) = {1, ..., v} else A1((s, u, v)) = {0}. If
player 1 bets a1 and player 2 bets a2 in state (s, u, v),
then the next state is (s′, u − a1, v − a2) where s′ =
s − 1a1≤a2 + 1a2≤a1 or Ω if s′ /∈ {1, ..., 5}. The reward
is 1 if the token leaves the board from position 5 and −1 if
the token leaves the board from position 1.

Remark 2. In turn-based games, each state is controlled
by a single player. In the zero-sum two-player SGs
framework, they can be seen as a game where ∀s ∈
S, card(A1(s)) = 1 or card(A2(s)) = 1. In this special
case, optimal strategies are deterministic (Hansen et al.,
2013). Furthermore, and as we already mentionned, the
greedy step (see definition in Sec. 2.4) reduces to finding

Approximate Dynamic Programming for Two-Player Zero-Sum Markov Games

a maximum rather than a minimax equilibrium and is thus
significantly simpler. Furthermore, one can see an MDP as
a zero-sum two-player SG where one player has no influ-
ence on both the reward and the dynamics. Therefore, our
analysis should be consistent with previous MDP analyses.

3. Stochastic Games and Approximate
Generalized Policy Iteration (AGPI)

In this section, we analyse the algorithm in the case of ap-
proximations in the greedy and evaluation steps. This anal-
ysis was done in L∞-norm in Patek (1997) for PI. We gen-
eralize it for AGPI in the case of σ-weighted Lp-norm, that
is defined for a function h and a distribution σ on the state

space as ‖h‖p,σ =

(∑
s∈S
|h(s)|pσ(s)

) 1
p

.

3.1. Approximate Generalized Policy Iteration

In Patek (1997) this algorithm is presented as GPI. It has
been first presented in (Van Der Wal, 1978). Similarly to
its exact counterpart, an iteration of this algorithm can be
divided in two steps: a greedy step and an evaluation step.
The main difference is that we account for possible errors
in both steps (respectively ε′k and εk).

For the greedy step, we shall shall write µk ← Ĝε′k(vk−1)
for:

T vk−1 ≤ Tµk vk−1 + ε′k

or, ∀µ Tµ vk−1 ≤ Tµk vk−1 + ε′k (3)

In other words, the strategy µk is not necessarily the best
strategy, but it has to be at most ε′k away from the best strat-
egy.

For the evaluation step, we consider that we may have an
additive error εk:

vk = (Tµk)mvk−1 + εk (4)

Remark 3. Evaluation step: In the evaluation step the
policy µk is fixed and we apply m times the operator
Tµk · = minν Tµk,ν · . Since the policy of the maximizer is
fixed, the problem solved in the evaluation step consists in
finding an optimal m-horizon counter-policy for the mini-
mizer.

3.2. Error Propagation

Since errors may accumulate from iterations to iterations,
we are interested in bounding the difference

lk = v∗ − vµk ≥ 0

where v∗ is the minimax value of the game (obtained when
both players play the Nash equilibrium µ∗ and ν∗) and

where vµk is the value when the maximizer plays µk and
the minimizer plays the optimal counter-strategy against
µk. This is a natural measure of quality for the strategy
µk that would be output by the approximate algorithm.

By definition, we have:

∀ν, ∀v, Tµk v ≤ Tµk,ν v (5)

In addition, we shall consider a few notations. The mini-
mizer policies νik, ν̃k, ν̂k and νk are policies that respec-
tively satisfy:

(Tµk)i+1vk−1 = Tµk,νik ...Tµk,ν1
k
Tµk vk−1, (6)

Tµ∗ vk = Tµ∗,ν̃k vk, (7)
Tµk vk = Tµk,ν̂k vk,
Tµk vµk = Tµk,νk vµk . (8)

In order to bound lk, we will study the following quantities
similar to those introduced by Scherrer et al. (2012) (recall
that Tµ and Tµ,ν are defined in Sec. 2.2 and the stochastic
kernel is defined in Sec. 2.1):

dk = v∗ − (Tµk)mvk−1 = v∗ − (vk − εk),

sk = (Tµk)mvk−1 − vµk = (vk − εk)− vµk ,
bk = vk − Tµk+1

vk

xk = (I − γPµk,ν̂k)εk + ε′k+1,

yk = −γPµ∗,ν̃k εk + ε′k+1.

Notice that lk = dk + sk. We shall prove the following re-
lations, similar to the one proved in (Scherrer et al., 2012).

Lemma 1. The following linear relations hold:

bk ≤ γPµk,ν̂k γPµk,νm−1
k

...γPµk,ν1
k
bk−1 + xk,

dk+1 ≤ γPµ∗,ν̃k dk + yk +

m−1∑
j=1

γPµk,νjk ...γPµk,ν1
k
bk,

sk ≤ (γPµk,νk)m(

∞∑
i=1

γPµk,νik ...γPµk,ν1
k
bk−1).

Contrary to the analysis of Scherrer et al. (2012) for MDPs
in which the operator Tµ is affine, it is in our case non-
linear. The proof that we now develop is thus slightly trick-
ier.

Proof. Let us start with bk:

bk = vk − Tµk+1
vk

= vk − Tµk vk + Tµk vk − Tµk+1
vk

Approximate Dynamic Programming for Two-Player Zero-Sum Markov Games

In Equation (3) with µ = µk−1 and k ← k + 1, we have
Tµk vk ≤ Tµk+1

vk + ε′k+1 then:

bk ≤ vk − Tµk vk + ε′k+1

= vk − εk − Tµk vk︸ ︷︷ ︸
=Tµk,ν̂k vk

+γPµk,ν̂k εk

+ εk − γPµk,ν̂k εk + ε′k+1

= vk − εk − Tµk,ν̂k (vk − εk)︸ ︷︷ ︸
Tµk,ν̂k is affine

+ (I − γPµk,ν̂k)εk + ε′k+1

From Equation (4), we have vk−εk = (Tµk)mvk−1. Thus,

bk ≤ (Tµk)mvk−1 − Tµk,ν̂k (Tµk)mvk−1 + xk (Eq. (6))

= (Tµk)mvk−1

− Tµk,ν̂k Tµk,νm−1
k

...Tµk,ν1
k

(Tµk vk−1) + xk (Eq. (6))

≤ Tµk,ν̂k Tµk,νm−1
k

...Tµk,ν1
k
vk−1

− Tµk,ν̂k Tµk,νm−1
k

...Tµk,ν1
k

(Tµk vk−1) + xk (Eq. (5))

= γPµk,ν̂k γPµk,νm−1
k

...γPµk,ν1
k

(vk−1 − Tµk vk−1)

+ xk

≤ γPµk,ν̂k γPµk,νm−1
k

...γPµk,ν1
k
bk−1 + xk

To bound dk+1, we decompose it in the three following
terms:

dk+1 = v∗ − (Tµk+1
)mvk

= Tµ∗ v∗ − Tµ∗ vk︸ ︷︷ ︸
1©

+ Tµ∗ vk − Tµk+1
vk︸ ︷︷ ︸

2©
+ Tµk+1

vk − (Tµk+1
)mvk︸ ︷︷ ︸

3©

In this equation, term 1© can be upper-bounded as follows:

Tµ∗ v∗ − Tµ∗ vk
= Tµ∗ v∗ − Tµ∗,ν̃k vk with ν̃k defined in Eq. (7)
≤ Tµ∗,ν̃k v∗ − Tµ∗,ν̃k vk since ∀ν, Tµ∗ . ≤ Tµ∗,ν .
= γPµ∗,ν̃k (v∗ − vk)

By definition 2© is bounded by the greedy error:

Tµ∗ vk − Tµk+1
vk ≤ ε′k+1(3) with µ← µ∗, k ← k + 1

Finally, bounding term 3© involves the bk quantity:

Tµk+1
vk − (Tµk+1

)mvk

=

m−1∑
j=1

(Tµk+1
)jvk − (Tµk+1

)j+1vk

=

m−1∑
j=1

(Tµk+1
)jvk − Tµk+1,ν

j
k+1

...Tµk+1,ν1
k+1
Tµk+1 vk

≤
m−1∑
j=1

[Tµk+1,ν
j
k+1

...Tµk+1,ν1
k+1

vk

− Tµk+1,ν
j
k+1

...Tµk+1,ν1
k+1
Tµk+1 vk] see (5)

=

m−1∑
j=1

γPµk+1,ν
j
k+1

...γPµk+1,ν1
k+1

(vk − Tµk+1 vk)

=

m−1∑
j=1

γPµk+1,ν
j
k+1

...γPµk+1,ν1
k+1

bk

Then dk+1 becomes:

dk+1 ≤ γPµ∗,ν̃k (v∗ − vk) + ε′k+1

+
m−1∑
j=1

γPµk+1,ν
j
k+1

...γPµk+1,ν1
k+1

bk

≤ γPµ∗,ν̃k (v∗ − vk) + γPµ∗,ν̃k εk − Pµ∗,ν̃k εk

+ ε′k+1 +

m−1∑
j=1

γPµk+1,ν
j
k+1

...γPµk+1,ν1
k+1

bk

≤ γPµ∗,ν̃k (v∗ − (vk − εk︸ ︷︷ ︸
(Tµk)mvk−1

))−Pµ∗,ν̃k εk + ε′k+1︸ ︷︷ ︸
yk

+

m−1∑
j=1

γPµk+1,ν
j
k+1

...γPµk+1,ν1
k+1

bk

≤ γPµ∗,ν̃k dk + yk

+

m−1∑
j=1

γPµk+1,ν
j
k+1

...γPµk+1,ν1
k+1

bks

Let us finally bound sk:

sk = (Tµk)mvk−1 − vµk
= (Tµk)mvk−1 − (Tµk)∞vk−1

= (Tµk)mvk−1 − (Tµk)m(Tµk)∞vk−1

= (Tµk)mvk−1 − (Tµk,νk)m(Tµk)∞vk−1

with νk defined in (8)
≤ (Tµk,νk)mvk−1 − (Tµk,νk)m(Tµk)∞vk−1 since (5)
= (γPµk,νk)m(vk−1 − (Tµk)∞vk−1)

= (γPµk,νk)m(

∞∑
i=0

(Tµk)ivk−1 − (Tµk)i(Tµk vk−1))

≤ (γPµk,νk)m
∞∑
i=0

γPµk,νik ...γPµk,ν1
k
(vk−1 − Tµk vk−1)

≤ (γPµk,νk)m
∞∑
i=0

γPµk,νik ...γPµk,ν1
k
bk−1

From linear recursive relations of the kind of Lemma 1,
Scherrer et al. (2012) show how to deduce a bound on the

Approximate Dynamic Programming for Two-Player Zero-Sum Markov Games

Lp-norm of lk. This part of the proof being identical to that
of Scherrer et al. (2012), we do not develop it here. For
completeness however, we include it in Appendix A.1 of
the Supplementary Material.

Theorem 1. Let ρ and σ be distributions over states. Let p,
q and q’ be such that 1

q + 1
q′ = 1. Then, after k iterations,

we have:

‖lk‖p,ρ ≤
2(γ − γk)(C1,k,0

q)
1
p

(1− γ)2
sup

1≤j≤k−1
‖εj‖pq′,σ ,

+
(1− γk)(C0,k,0

q)
1
p

(1− γ)2
sup

1≤j≤k

∥∥ε′j∥∥pq′,σ ,
+

2γk

1− γ
(Ck,k+1,0
q)

1
p min(‖d0‖pq′,σ , ‖b0‖pq′,σ).

where

Cl,k,dq =
(1− γ)2

γl − γk
k−1∑
i=l

∞∑
j=i

γjcq(j + d),

with the following norm of a Radon-Nikodym derivative:

cq(j) = sup
µ1,ν1,...,µj ,νj

∥∥∥∥d(ρPµ1,ν1
...Pµj ,νj)

dσ

∥∥∥∥
q,σ

Remark 4. The Radon-Nikodym derivative of measure ρ
on S with respect to measure σ on S is in the discrete case
the function h defined by: h(s) = ρ(s)

σ(s) when σ(s) 6= 0,∞
otherwise.

Remark 5. If player 2 has no influence on the game, then
the γ-discounted two-player zero-sum SG is simply a γ-
discounted MDP. In that case the bound is the same as in
Scherrer et al. (2012).

Remark 6. In the case of a SG with no discount factor
but with an absorbing state the expression given in lemma
1 is still valid. Instead of having a γ-discounted transition
kernel we would have a simple transition kernel. And if this
transition kernel has a property

∃l, sup
µ0,ν0,...,µl,νl

|

∥∥∥∥∥
l∏
i=0

Pµi,νi

∥∥∥∥∥
∞

≤ γ < 1,

we could still compute properties on the propagation of er-
rors.

Remark 7. One should notice that when p tends to infinity,
the bound becomes:

lim inf
k→+∞

‖lk‖∞ ≤
2γ

(1− γ)2
ε+

1

(1− γ)2
ε′

where ε and ε′ are respectively the sup of errors at the
evaluation step and the sup of errors at the greedy step in
∞-norm. We thus recover the bounds computed by Patek
(1997).

4. Application
The analysis of error propagation presented in Sect. 3.2 is
general enough to develop several implementations. From
the moment one can control the error made at each iteration
step, the bound presented in Theorem 1 applies.

4.1. Algorithm

In this section, we present the Approximate Generalized
Policy Iteration-Q (AGPI-Q) algorithm which is an ex-
tension for SG of Fitted-Q. This algorithm is offline and
uses the so-called state-action value function Q. The state-
action value function extends the value function by adding
two degrees of freedom for the first action of each player.
More formally, the state-action value functionQµ,ν(s, a, b)
is defined as

Qµ,ν(s, a, b) = E[r(s, a, b)] +
∑
s′∈S

p(s′|s, a, b)vµ,ν(s′).

We assume we are given some samples
((xj , aj1, a

j
2), rj , x′j)j=1,...,N and an initial Q-function

(here we chose the null function). As it is an instance of
AGPI, each iteration of this algorithm is made of a greedy
step and an estimation step. The algorithm is precisely
described in Algorithm 1.

Algorithm 1 AGPI - Q for Batch sample

Input: ((xj , aj1, a
j
2), rj , x′j)j=1,...,N some samples,

q0 = 0 a Q-function,
F an hypothesis space
for k=1,2,...,K do

Greedy step:
for all j do
āj = arg maxā minb̄ qk−1(x′j , ā, b̄) (solving a
matrix game)

end for
Evaluation step:
qk,0 = qk−1

for i=1,...,m do
for all j do
qj = r(xj , aj1, a

j
2) + γminb qk,i−1(x′j , āj , b)

end for

qk,i = arg minq∈F
N∑
j=1

l(q(xj , aj1, a
j
2), qj)

Where l is a loss function.
qk = qk,m

end for
end for

output qK

For the greedy step, the minimax policy for the maximizer
on each matrix game defined by (qk(x′j , a, b))a,b. In gen-
eral, this step involves solving N linear programs; recall

Approximate Dynamic Programming for Two-Player Zero-Sum Markov Games

that in the case of a turn-based game this step reduces to
finding a maximum. The evaluation step involves solv-
ing the MDP with an horizon m for the minimizer. This
part is similar to fitted-Q iteration. At each step we try
to find the best fit over our hypothesis space for the next
Q-function according to some loss function l(x, y) (often,
l(x, y) = |x− y|2).

4.2. Analysis

In this case, we have ε′k = 0 and εk the error made on
qk at each iteration. Let us note εk,i the error or fitting
the Q-function on the feature space. The Bellman oper-
ator in the case of actions value function Q(s, a1, a2) for
policy µ and ν is (Tµ,ν Q)(s, a1, a2) = r(s, a1, a2) +
γPµ,ν (Q(., µ(.), ν(.))). The other non-linear operators
are analogous to those defined in Sec. 2.2. In this section
the operator used is the one on Q-function.

We have qk,i+1 = Tµk qk,i + εi. Let us define νk,i such as
Tµk mqk,0 = Tµk,νk,m−1

...Tµk,νk,0 qk,0. Furthermore we
have qk,i+1 ≤ Tµk,νk,i qk,i + εk,i. On the one hand, we
have:

εk = qk,m − Tµk mqk,0
≤ Tµk,νk,m−1

...Tµk,νk,0 qk,0

+

m−1∑
i=0

Pµk,νk,m−1
...Pµk,νk,i+1

εk,i

− Tµk,νk,m−1
...Tµk,νk,0 qk,0

≤
m−1∑
i=0

Pµk,νk,m−1
...Pµk,νk,i+1

εk,i (9)

On the other hand (with ν̃k,i as qk,i+1 = Tµk,ν̃k,i qk,i +
εk,i), we have:

εk = qk,m − Tµk mqk,0
≥ Tµk,ν̃k,m−1

...Tµk,ν̃k,0 qk,0

+

m−1∑
i=0

Pµk,ν̃k,m−1
...Pµk,ν̃k,i+1

εk,i

− Tµk,ν̃k,m−1
...Tµk,ν̃k,0 qk,0

≥
m−1∑
i=0

Pµk,ν̃k,m−1
...Pµk,ν̃k,i+1

εk,i (10)

From these inequalities, we can provide the following
bound (the proof is given in Appendix B):

‖lk‖p,ρ ≤
2(γ − γk)(1− γm)

(1− γ)3
(C1,k,0,m,0
q)

1
p sup

i,l
‖εi,l‖pq′,σ

+
2γk

1− γ
(Ck,k+1,0
q)

1
p min(‖d0‖pq′,σ , ‖b0‖pq′,σ),

(11)

with

Cl,k,l
′,k′,d

q =
(1− γ)3

(γl − γk)(γl′ − γk′)

k−1∑
i=l

k′−1∑
i′=l′

∞∑
j=i+i′

γjcq(j + d).

4.3. Complexity analysis

At the greedy step, the algorithm solves N minimax equi-
libria for a zero-sum matrix game. This is usually done
by linear programming. For state s, the complexity of
such an operation is the complexity of solving a linear
program with cs = 1 + card(A1(s)) + card(A2(s))
constrains and with card(A1(s)) variables. Let us note
L(cs, card(A1(s))) this complexity. Then, the complex-
ity of this step is bounded by NL(c, a) (with c =

sup
s∈{x′1,...,x′N}

cs and a = sup
s∈{x′1,...,x′N}

card(A1(s))). Us-

ing the simplex method, L(c, a) may grow exponentially
with c while with the interior point method, L(c, a) is
O(a3.5) (Karmarkar, 1984). The time to compute qj in
the evaluation step depends on finding a maximum over
A2(x′j). And the regression complexity to find qk,i de-
pends on the regression technique. Let us note this com-
plexity R(N). Finally, the complexity of this step is
mR(N).

The overall complexity is thus O(NL(c, a) +mR(N)); in
general, the complexity of solving the linear program will
be the limiting factor.

5. Experiments
In this section, AGPI-Q is tested on the Alesia game de-
scribed in Sec. 2.5 where we assume that both players start
with a budget n = 20. As a baseline, we use the exact
solution of the problem provided by VI. We have run the
algorithm for K = 10 iterations and for m ∈ {1, 2, 3, 4, 5}
evaluation steps. We have considered sample set sizes
N = 2500, 5000, 10000. Each experiment is repeated 20
times. First, we generate N uniform samples (xj) over
the state space. Then, for each state, we draw uniformly
the actions of each player in the set of their own action
space in that state aj1 ∼ U(A1(xj)), aj2 ∼ U(A2(xj)),
rj = r(xj , aj1, a

j
2) and compute the next state x′j . As hy-

pothesis space, we use CART trees (Breiman et al., 1984)
which exemplifies the non-parametric property of the algo-
rithm.
The performance of the algorithm is measured as the
mean-squared error between the value function vK(s) =
minb maxa qK(s, a, b) where qK is the output of the algo-
rithm AGPI-Q and the actual value function computed via
VI. Figure 1 shows the evolution of performance along iter-
ations forN = 10000 for the different values of the param-
eter m. Figure 2 shows the exact value function (Fig. 2(a))
and the approximated one vK (Fig. 2(b)). The complete list
of experiments results can be found in the supplementary

Approximate Dynamic Programming for Two-Player Zero-Sum Markov Games

file, especially for different size of sample set N = 2500
and N = 5000.

For each size of sample set, the asymptotic convergence is
better for small values ofm. This is conform to Eq. (11), in
which the term 2(γ−γk)(1−γm)

(1−γ)3 increases withm. However,
for small values of k, the mean-squared error is reducing
when m is increasing. This is coherent with experimental
results when using MPI for MDP: the bigger m, the higher
the convergence rate. The price to pay for this accelera-
tion of convergence towards the optimal value is an heav-
ier evaluation step. This is similar to results in the exact
case Puterman (1994). Overall, this suggests to use large
values of m at the beginning of the algorithm and to reduce
it as k grows to get a smaller asymptotic error.

1 2 3 4 5 6 7 8 9 10
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

er
ro

r

m=1
m=2
m=3
m=4
m=5

Figure 1. Mean-squared error (y-axis) between the estimated
value function and the true value function at step k (x-axis). For
n = 20 and N = 10000

(a) Exact value for the Alesia
game for player’s budget 0...20
and for token position 3

(b) Value computed by AGPI-
Q for the game of Alesia for
player’s budget 0...20 and for
token position 3

Figure 2. Value functions at token position 3

6. Conclusion and Perspectives
This work provides a novel and unified error propagation
analysis in Lp-norm of well-known algorithms (API, AVI
and AGPI) for zero-sum two-player SGs. It extends the er-
ror propagation analyses of Scherrer et al. (2012) for MDPs
to zero-sum two-player SGs and of Patek (1997) which is
an L∞-norm analysis for only API. In addition, we pro-
vide a practical algorithm (AGPI-Q) which learns a good
approximation of the Nash Equilibrium from batch data
provided in the form of transitions sampled from actual
games (the dynamics is not known). This algorithm is an
extension of Fitted-Q for zero-sum two-player SGs and can
thus be non-parametric. No features need to be provided
or hand-crafted for each different application which is a
significant advantage. Finally, we empirically demonstrate
that AGPI-Q performs well on a simultaneous two-player
game, namely Alesia.

It appears that the provided bound is highly sensitive to γ
(which is a common problem of ADP). This is critical and
further work should concentrate on reducing the impact of
γ in the final error bound. Since non-stationary policies
can reduce the impact of γ in MDP (Scherrer & Lesner,
2012), extensions of this work to zero-sum two-player SGs
is forecasted. Moreover, we intend to apply AGPI-Q to
large scale games and implement it on real data.

References
Antos, A., Szepesvári, C., and Munos, R. Fitted-Q Iteration

in Continuous Action-Space MDPs. In Proc. of NIPS,
pp. 9–16, 2008.

Bertsekas, D. P. Dynamic Programming and Optimal Con-
trol, volume 1. Athena Scientific Belmont, MA, 1995.

Bowling, M. and Veloso, M. Rational and Convergent
Learning in Stochastic Games. In Proc. of IJCAI, vol-
ume 17, pp. 1021–1026, 2001.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A.
Classification and Regression Trees. CRC press, 1984.

Busoniu, L., Babuska, R., and De Schutter, B. A com-
prehensive survey of multiagent reinforcement learn-
ing. IEEE Transactions on Systems, Man, and Cybernet-
ics, Part C: Applications and Reviews, 38(2):156–172,
March 2008.

Ernst, D., Geurts, P., and Wehenkel, L. Tree-Based Batch
Mode Reinforcement Learning. In Journal of Machine
Learning Research, pp. 503–556, 2005.

Farahmand, A.-M., Szepesvári, C., and Munos, R. Error
Propagation for Approximate Policy and Value Iteration.
In Proc. of NIPS, pp. 568–576, 2010.

Approximate Dynamic Programming for Two-Player Zero-Sum Markov Games

Gabillon, V., Lazaric, A., Ghavamzadeh, M., and Scherrer,
B. Classification-Based Policy Iteration with a Critic. In
Proc. of ICML, pp. 1049–1056, 2011.

Greenwald, A., Hall, K., and Serrano, R. Correlated Q-
learning. In Proc. of ICML, volume 3, pp. 242–249,
2003.

Hansen, T. D., Miltersen, P. B., and Zwick, U. Strat-
egy Iteration is Strongly Polynomial for 2-Player Turn-
Based Stochastic Games with a Constant Discount Fac-
tor. JACM, 60(1):1, 2013.

Hu, J. and Wellman, M. P. Nash Q-Learning for General-
Sum Stochastic Games. JMLR, 4:1039–1069, 2003.

Karmarkar, N. A New Polynomial-time Algorithm for Lin-
ear Programming. In Proc. of ACM Symposium on The-
ory of Computing, pp. 302–311, 1984.

Lagoudakis, M. G. and Parr, R. Least-squares policy itera-
tion. Journal of Machine Learning Research, pp. 1107–
1149, 2003a.

Lagoudakis, M. G. and Parr, R. Reinforcement Learning as
Classification: Leveraging Modern Classifiers. In Proc.
of ICML, volume 3, pp. 424–431, 2003b.

Lagoudakis, Michail G and Parr, Ronald. Value function
approximation in zero-sum markov games. In Proc. of
UAI, pp. 283–292, 2002.

Lazaric, A., Ghavamzadeh, M., Munos, R., et al. Analysis
of a Classification-Based Policy Iteration Algorithm. In
Proc. of ICML, pp. 607–614, 2010.

Littman, M. L. Markov Games as a Framework for Multi-
Agent Reinforcement Learning. In Proc. of ICML, vol-
ume 94, pp. 157–163, 1994.

Meyer, Christophe, Ganascia, Jean-Gabriel, and Zucker,
Jean-Daniel. Learning strategies in games by anticipa-
tion. In IJCAI 97, August 23-29, 1997, 2 Volumes, pp.
698–707, 1997.

Munos, R. and Szepesvári, C. Finite-time bounds for fitted
value iteration. JMLR, 9:815–857, 2008.

Patek, S. D. Stochastic Shortest Path Games: Theory and
Algorithms. PhD thesis, Massachusetts Institute of Tech-
nology, Laboratory for Information and Decision Sys-
tems, 1997.

Puterman, M. L. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
1994.

Scherrer, B. and Lesner, B. On the Use of Non-Stationary
Policies for Stationary Infinite-Horizon Markov Deci-
sion Processes. In Proc. of NIPS, pp. 1826–1834, 2012.

Scherrer, B., Ghavamzadeh, M., Gabillon, V., and Geist,
M. Approximate Modified Policy Iteration. In Proc. of
ICML, 2012.

Shapley, L. S. Stochastic Games. Proceedings of the Na-
tional Academy of Sciences of the United States of Amer-
ica, 39(10):1095, 1953.

Van Der Wal, J. Discounted Markov Games: Generalized
Policy Iteration Method. Journal of Optimization Theory
and Applications, 25(1):125–138, 1978.

Von Neumann, J. Morgenstern, 0.(1944) theory of games
and economic behavior. Princeton: Princeton UP, 1947.

Approximate Dynamic Programming for Two-Player Zero-Sum Markov Games

A. Appendix: Demonstration of Lemma 2
The following proof is similar to the one for MDP (Scherrer et al., 2012) we write it for the sake of completeness. Further-
more, equation (14) is the starting point of demonstration of (11).

We will use the same abusive but simplifying notation as in (Scherrer et al., 2012). We will note Γn any product of n
discounted transition Kernel. Then Γn represents the set {γPµ1,ν1

, ... , γPµn,νn , with µi, νi random strategies}.Then
Γn is the represent a class of discounted stochastic matrix. One should read Γn as there exist γP1, ..., γPn such as Γn

represent the product γP1...γPn. For example we have the following property:

α1Γiα2Γj + α3Γk = α1α2Γi+j + α3Γk.

We can rewrite Lemma 1 in this Simple way:

bk ≤ Γmbk−1 + xk, (12)

dk+1 ≤ Γdk + yk +

m−1∑
j=1

Γjbk,

sk ≤ Γm(

∞∑
i=1

Γibk−1).

We prove these three inequalities:

bk ≤
k∑
i=1

Γm(k−i)xk + Γmkb0

dk ≤
k∑
i=1

Γi−1yk−i +

k−1∑
i=1

mi−1∑
j=i

Γjxk−i +

mk−1∑
i=k

Γib0 + Γkd0︸ ︷︷ ︸
zk

sk ≤
k−1∑
i=1

∞∑
j=mi

Γj+m(k−i)xi + (

∞∑
j=mk

Γj)b0︸ ︷︷ ︸
z′k

First inequality. After expanding (12) we get:

bk ≤
k∑
i=1

Γm(k−i)xk + Γmkb0 (13)

Approximate Dynamic Programming for Two-Player Zero-Sum Markov Games

Second inequality :

dk ≤ Γkd0 +

k−1∑
j=0

Γk−1−j(yj + (

m−1∑
l=1

Γl)bj)

≤ Γkd0 +

k−1∑
j=0

Γk−1−j [yj + (

m−1∑
l=1

Γl)(

j∑
i=1

Γm(j−i)xi + Γmjb0)]

=

k∑
i=1

Γi−1yk−i +

k−1∑
j=0

m−1∑
l=1

j∑
i=1

Γk−1−j+l+m(j−i)xi + zk

=

k∑
i=1

Γi−1yk−i +

k−1∑
i=1

k−1∑
j=i

m−1∑
l=1

Γk−1+l+j(m−1)−mixi + zk

=

k∑
i=1

Γi−1yk−i +

k−1∑
i=1

m(k−i)−1∑
j=k−i

Γjxi + zk

=

k∑
i=1

Γi−1yk−i +

k−1∑
i=1

mi−1∑
j=i

Γjxk−i + zk

With zk:

zk =

k−1∑
j=0

m−1∑
l=1

Γk−1−j+l+mjb0 + Γkd0

=

mk−1∑
i=k

Γib0 + Γkd0

last inequality (we replace bk−1 with it’s expression (13)):

sk ≤
k−1∑
i=1

∞∑
j=mi

Γj+m(k−i)xi + (

∞∑
j=mk

Γj)b0︸ ︷︷ ︸
z′k

And finally bounding lk

lk = dk + sk

≤
k∑
i=1

Γi−1yk−i +

k−1∑
i=1

∞∑
j=i

Γjxk−i︸ ︷︷ ︸
Depend on errors

+ zk + z′k︸ ︷︷ ︸
Depend on initial condition

(14)

ηk = zk + z′k =

∞∑
i=k

Γib0 + Γkd0

Then we prove the following lemma which is similar to that for MDP given by (Scherrer et al., 2012):

Approximate Dynamic Programming for Two-Player Zero-Sum Markov Games

Lemma 2. ∀k ≥ 1

|lk| ≤2

k−1∑
i=1

∞∑
j=i

Γj |εk−i|+
k−1∑
i=0

∞∑
j=i

Γj
∣∣ε′k−i∣∣+ h(k),

with h(k) = 2

∞∑
i=k

Γi |b0| or 2

∞∑
i=k

Γi |d0| .

Relation between b0 and d0:

b0 = v0 − Tµ1
v0

= v0 − v∗ + Tµ∗ v∗ − Tµ∗ v0 + Tµ∗ v0 − Tµ1
v0

≤ −d0 + γPµ∗,ν̃0
d0 + ε′1

≤ (I − γPµ∗,ν̃0
)(−d0) + ε′1

d0 ≤ (I − γPµ∗,ν̃0)−1(ε′1 − b0)

One should notice that in a discrete state space Pµ,ν is a stochastic matrix. Then I − γPµ∗,ν̃0
is invertible since γPµ∗,ν̃0

has a spectral radius < 1.

then:

|ηk| ≤
∞∑
i=k

Γi((I − γPµ∗,ν̃0
) |d0|+ |ε′1|) + Γk |d0|

≤
∞∑
i=k

Γi((I + Γ) |d0|+ |ε′1|) + Γk |d0|

≤ 2

∞∑
i=k

Γi |d0|+
∞∑
i=k

Γi |ε′1|

and also:

|ηk| ≤
∞∑
i=k

Γi |b0|+ Γk(I − γPµ∗,ν̃0)−1(|ε′1|+ |b0|)

≤
∞∑
i=k

Γi |b0|+ Γk
∞∑
i=0

Γ(|ε′1|+ |b0|)

≤ 2

∞∑
i=k

Γi |b0|+
∞∑
i=k

Γi |ε′1|

because lk is positive we have then:

|lk| ≤
k∑
i=1

Γi−1 |yk−i|+
k−1∑
i=1

∞∑
j=i

Γj |xk−i|+ |ηk|

≤
k∑
i=1

Γi−1(Γ |εk−i|+
∣∣ε′k+1−i

∣∣) +

k−1∑
i=1

∞∑
j=i

Γj((I + Γ) |εk−i|+
∣∣ε′k+1−i

∣∣) + |ηk| note that ε0 = 0

≤
k−1∑
i=1

(Γi +

∞∑
j=i

(Γj + Γj+1)) |εk−i|+
k−1∑
i=1

(Γi−1 +

∞∑
j=i

Γj)
∣∣ε′k+1−i

∣∣+ Γk−1 |ε′1|+
∞∑
i=k

Γi |ε′1|+ h(k)

≤ 2

k−1∑
i=1

∞∑
j=i

Γj |εk−i|+
k−1∑
i=0

∞∑
j=i

Γj
∣∣ε′k−i∣∣+ h(k) with h(k) = 2

∞∑
i=k

Γi |b0| or 2

∞∑
i=k

Γi |d0|

Approximate Dynamic Programming for Two-Player Zero-Sum Markov Games

A.1. Demonstration of Theorem 1

Let us recall Scherrer’s lemma (demonstration can be found in (Scherrer et al., 2012)).

Lemma 3. Let I and (Ji)i∈I be a sets of positive integers, {I1, ... , In} a partition of I. Let f and (gi)i∈I be function
such as:

|f | ≤
∑
i∈I

∑
j∈Ji

Γj |gi| =
n∑
l=1

∑
i∈Il

∑
j∈Ji

Γj |gi| .

Then for all p, q and q′ such as 1
q + 1

q′ = 1 and for all distribution ρ and σ we have

‖f‖p,ρ ≤
n∑
l=1

(Cq(l))
1
p sup
i∈Il
‖gi‖pq′,σ

∑
i∈Il

∑
j∈Ji

γj .

with the concentrability coefficient written:

Cq(l) =

∑
i∈Il

∑
j∈Ji

γjcq(j)∑
i∈Il

∑
j∈Ji

γj
.

Theorem 1 can be proven by applying lemma 3 with:

I = {1, ..., 2k}
I = {I1, I2, I3}, I1 = {1, 2, ..., k − 1}, I2 = {k, ..., 2k − 1}, I3 = {2k}

∀i ∈ I1

gi = 2εk−i

Ji = {i, i+ 1, ...}

∀i ∈ I2

gi = ε′k−(i−k)

Ji = {i− k, i− k + 1, ...}

∀i ∈ I3

gi = 2d0 or 2b0

Ji = {k, k + 1, ...}

Approximate Dynamic Programming for Two-Player Zero-Sum Markov Games

B. Appendix: Bound for AGPI-Q
From (14) and with xk = (I − Γ)εk and yk = −Γεk we can compute:

lk = dk + sk

≤
k∑
i=1

Γi−1Γ(−εk−i) +

k−1∑
i=1

∞∑
j=i

Γj(I − Γ)εk−i + zk + z′k (15)

≤
k∑
i=1

Γi−1Γ

[
m−1∑
l=0

Γm−l−1(−εk−i,l)

]
+

k−1∑
i=1

∞∑
j=i

Γj(I − Γ)

[
m−1∑
l=0

Γm−l−1εk−i,l

]
+ zk + z′k

In (15) we use (10) to bound −εk−i and (9) to bound εk−i Since lk ≥ 0:

|lk| ≤
k∑
i=1

Γi

[
m−1∑
l=0

Γm−l−1 |εk−i,l|

]
+

k−1∑
i=1

∞∑
j=i

Γj(I + Γ)

[
m−1∑
l=0

Γm−l−1 |εk−i,l|

]
+ h(k) with ε0,l = 0

≤ 2

k−1∑
i=1

∞∑
j=i

Γj

[
m−1∑
l=0

Γl |εk−i,m−l−1|

]
+ h(k)

≤ 2

k−1∑
i=1

m−1∑
l=0

∞∑
j=i+l

Γj |εk−i,m−l−1|+ h(k)

with lemma 3 applied to:

I = {1, ..., (k − 1)m+ 1}
I = {I1, I2}, I1 = {1, 2, ..., (k − 1)m}, I2 = {(k − 1)m+ 1}

∀ξ ∈ I1, ξ = i+ (k − 1)l

gξ = 2εk−i,m−l−1

Jξ = {i+ l, i+ l + 1, ...}

∀i ∈ I2

gi = 2d0 or 2b0

Ji = {k, k + 1, ...}

The result is:

‖lk‖p,ρ ≤
2(γ − γk)(1− γm)

(1− γ)3
(C1,k,0,m,0
q)

1
p sup

i,l
‖εi,l‖pq′,σ +

2γk

1− γ
(Ck,k+1,0
q)

1
p min(‖d0‖pq′,σ , ‖b0‖pq′,σ).

With:

Cl,k,l
′,k′,d

q =
(1− γ)3

(γl − γk)(γl′ − γk′)

k−1∑
i=l

k′−1∑
i′=l′

∞∑
j=i+i′

γjcq(j + d).

Approximate Dynamic Programming for Two-Player Zero-Sum Markov Games

C. Appendix: Experiments
Results fo experiments for N = 2500 (Figure 3(a)) and N = 5000 (Figure 3(b))

C.1. Mean square error between approximate value and exact value

1 2 3 4 5 6 7 8 9 10
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

er
ro

r

m=1
m=2
m=3
m=4
m=5

(a) Mean square error (y-axis) between the estimated value
function and the true value function at step k (x-axis). For
n = 20 and N = 2500

1 2 3 4 5 6 7 8 9 10
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

er
ro

r

m=1
m=2
m=3
m=4
m=5

(b) Mean square error (y-axis) between the estimated value
function and the true value function at step k (x-axis). For
n = 20 and N = 5000

C.2. Exact value function, approximate value function and error for N = 10000

0 5 10 15
0

5

10

15

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15
0

5

10

15

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15
0

5

10

15

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15
0

5

10

15

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15
0

5

10

15

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3. Exact value for the game of ALESIA. From left to right the value of the game (for player’s budget = 0...20) for token’s position
5 to 1

0 5 10 15
0

5

10

15

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0 5 10 15
0

5

10

15

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0 5 10 15
0

5

10

15

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0 5 10 15
0

5

10

15

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0 5 10 15
0

5

10

15

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 4. Value computed by AGPI-Q for the game of ALESIA. From left to right the approximate value of the game (for player’s budget
= 0...20) for token’s position 5 to 1

Approximate Dynamic Programming for Two-Player Zero-Sum Markov Games

0 5 10 15
0

5

10

15

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0 5 10 15
0

5

10

15

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0 5 10 15
0

5

10

15

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0 5 10 15
0

5

10

15

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0 5 10 15
0

5

10

15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5. Absolute difference between value computed by AGPI-Q and the exact value. From left to right the error of the game (for
player’s budget = 0...20) for token’s position 5 to 1

