Contributions algorithmiques au contrôle optimal stochastique à temps discret et horizon infini

Bruno Scherrer

Soutenance d'HDR - 28 juin 2016

Contrôle optimal stochastique à horizon infini (Puterman, 1994; Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998)

Système dynamique contrôlé avec récompenses:

 $x_0, a_0, r_0, x_1, a_1, r_1, x_2, a_2, r_2, x_3, \ldots$

Processus décisionnel de Markov (MDP):

- X, espace d'états (fini ou dénombrable),
- A, espace d'actions (fini ou dénombrable),
- $r: X \times A \rightarrow \mathbb{R}$, fonction récompense, $(r_t = r(x_t, a_t))$
- $p: X \times A \rightarrow \Delta_X$, noyau de transition. $(x_{t+1} \sim p(\cdot|x_t, a_t))$

But: Trouver une politique $\pi : X \to A$ déterministe stationnaire de sorte à maximiser la valeur $v_{\pi}(x)$ pour tous x:

$$v_{\pi}(x) = \mathbb{E}\left[\left|\sum_{t=0}^{\infty} \gamma^t r_t\right| x_0 = x, \ \{\forall t, \ a_t = \pi(x_t)\}\right].$$
 $(\gamma \in (0,1))$

Illustration: Tetris

Equations & Operateurs de Bellman

• Pour toute politique π , v_{π} est solution de **l'équation de Bellman**:

$$\forall x, \ \mathbf{v}_{\pi}(x) = \mathbf{r}(x, \pi(x)) + \gamma \sum_{y \in X} \mathbf{p}(y|x, \pi(x)) \mathbf{v}_{\pi}(y) \quad \Leftrightarrow \quad \mathbf{v}_{\pi} = \mathcal{T}_{\pi} \mathbf{v}_{\pi}.$$

• La valeur optimale v_{*} est solution de l'équation d'optimalité de Bellman:

$$\forall x, \ v_*(x) = \max_{a \in A} \left(r(x, a) + \gamma \sum_{y \in X} p(y|x, a) v_*(y) \right) \quad \Leftrightarrow \quad v_* = T v_*.$$

- $T_{\pi} : \mathbb{R}^{X} \to \mathbb{R}^{X}$ and $T : \mathbb{R}^{X} \to \mathbb{R}^{X}$ sont γ -contractants pour la norme infinie $\| \cdot \|_{\infty}$.
- Pour toute $v \in \mathbb{R}^X$, π est une **politique gloutonne** par rapport à v, noté $\pi = \mathcal{G}v$, ssi

$$\forall x, \ \pi(x) \in \arg \max_{a \in A} \left(r(x, a) + \gamma \sum_{y \in X} p(y|x, a) v(y) \right) \quad \Leftrightarrow \quad \mathcal{T}_{\pi} v = \mathcal{T} v.$$

• $\pi_* \in \mathcal{G}v_*$

Value Iteration

 $\pi_{k+1} \leftarrow \mathcal{G}_{v_k}$ $v_{k+1} \leftarrow \mathcal{T}_{v_k} = \mathcal{T}_{\pi_{k+1}} v_k$

Policy Iteration

 $\begin{aligned} &\pi_{k+1} \leftarrow \mathcal{G} \mathbf{v}_k \\ &\mathbf{v}_{k+1} \leftarrow \mathbf{v}_{\pi_{k+1}} = (\mathcal{T}_{\pi_{k+1}})^\infty \mathbf{v}_k \end{aligned}$

Modified Policy Iteration (Puterman & Shin, 1978)

 $\pi_{k+1} \leftarrow \mathcal{G}v_k$ $v_{k+1} \leftarrow (\mathcal{T}_{\pi_{k+1}})^m v_k \qquad (1 \le m \le \infty)$

Value Iteration

 $\begin{aligned} \pi_{k+1} &\leftarrow \mathcal{G} \mathbf{v}_k \\ \mathbf{v}_{k+1} &\leftarrow \mathbf{T} \mathbf{v}_k = \mathbf{T}_{\pi_{k+1}} \mathbf{v}_k \end{aligned}$

Policy Iteration

 $\begin{aligned} \pi_{k+1} &\leftarrow \mathcal{G} v_k \\ v_{k+1} &\leftarrow v_{\pi_{k+1}} = (\mathcal{T}_{\pi_{k+1}})^\infty v_k \end{aligned}$

Modified Policy Iteration (Puterman & Shin, 1978)

 $\pi_{k+1} \leftarrow \mathcal{G}v_k$ $v_{k+1} \leftarrow (\mathcal{T}_{\pi_{k+1}})^m v_k \qquad (1 \le m \le \infty)$

Value Iteration

 $\begin{aligned} \pi_{k+1} &\leftarrow \mathcal{G} \mathbf{v}_k \\ \mathbf{v}_{k+1} &\leftarrow \mathbf{T} \mathbf{v}_k = \mathbf{T}_{\pi_{k+1}} \mathbf{v}_k \end{aligned}$

Policy Iteration

 $\begin{aligned} \pi_{k+1} &\leftarrow \mathcal{G} v_k \\ v_{k+1} &\leftarrow v_{\pi_{k+1}} = (\mathcal{T}_{\pi_{k+1}})^\infty v_k \end{aligned}$

Modified Policy Iteration (Puterman & Shin, 1978)

$$\pi_{k+1} \leftarrow \mathcal{G} v_k \\ v_{k+1} \leftarrow (\mathcal{T}_{\pi_{k+1}})^m v_k \qquad (1 \le m \le \infty)$$

Plan de l'exposé

1 Complexité de Policy Iteration

2 Classification Based Modified Policy Iteration

3 Politiques non-stationnaires

4 Sur quelques schémas approchés de type PI

Plan de l'exposé

1 Complexité de Policy Iteration

2 Classification Based Modified Policy Iteration

3 Politiques non-stationnaires

④ Sur quelques schémas approchés de type PI

Complexité de Policy Iteration (1)

- $X = \{1, 2, \dots, n\}$, espace d'états fini,
- $A = \{1, 2, \dots, m\}$, espace d'actions fini.

Theorème (Scherrer, 2016)

Policy Iteration termine après au plus $O\left(\frac{nm}{1-\gamma}\log\left(\frac{1}{1-\gamma}\right)\right)$ itérations.

Theorème (Scherrer, 2016)

Simplex-PI termine après au plus
$$O\left(\frac{n^2m}{1-\gamma}\log\left(\frac{1}{1-\gamma}\right)\right)$$
 itérations.

- Améliore d'un facteur O(log n) les précédentes bornes de Policy Iteration (Hansen et al., 2013) et Simplex-PI (Ye, 2011).
- Optimalité: n, m, ¹/_{1-γ}? (Fearnley, 2010; Hollanders *et al.*, 2012; Melekopoglou & Condon, 1994).
- Extension aux jeux stochastiques (Akian & Gaubert, 2013)

Complexité de Policy Iteration (2)

Theorème (Scherrer, 2016)

Simplex-PI termine après au plus $O(n^3m^2\tau_t\tau_r\log^2(n\tau_t\tau_r))$ itérations.

• Généralise le résultat et la preuve de (Post & Ye, 2012) sur les MDPs déterministes (où $\tau_t \leq n$ et $\tau_r \leq n$)

Complexité de Policy Iteration pour un MDP déterministe ? (entre $\Omega(n^2)$ (Hansen & Zwick, 2010) et $O(\frac{m^2}{n})$ (Hollanders *et al.*, 2015))

Complexité de Policy Iteration (2)

Theorème (Scherrer, 2016)

Simplex-PI termine après au plus $O\left(n^3m^2\tau_t\tau_r\log^2(n\tau_t\tau_r)\right)$ itérations.

• Généralise le résultat et la preuve de (Post & Ye, 2012) sur les MDPs déterministes (où $\tau_t \leq n$ et $\tau_r \leq n$)

Complexité de Policy Iteration pour un MDP déterministe ? (entre $\Omega(n^2)$ (Hansen & Zwick, 2010) et $O(\frac{m^2}{n})$ (Hollanders *et al.*, 2015))

Plan de l'exposé

1 Complexité de Policy Iteration

2 Classification Based Modified Policy Iteration

3 Politiques non-stationnaires

④ Sur quelques schémas approchés de type PI

Programmation dynamique approchée

• $[(T_{\pi})^m v](x)$ approché par Monte-Carlo:

$$[(\mathcal{T}_{\pi})^{m}\mathbf{v}](x) = \mathbb{E}\left[\sum_{t=0}^{m-1} \gamma^{t} r(x_{t}, a_{t}) + \gamma^{m} \mathbf{v}(x_{m}) \middle| x_{0} = x, \{\forall t, a_{t} = \pi(x_{t})\}\right]$$

• " $\mathbf{v}(\cdot) \leftarrow [Au](\cdot)$ " approché par régression:

$$\min_{\mathbf{v}\in\mathcal{F}\subset\mathbb{R}^{X}}\sum_{x}\mu(x)|\mathbf{v}(x)-[Au](x)|^{p}, \quad p=1,2,\ldots$$

• $\pi(\cdot) \leftarrow [\mathcal{G}f](\cdot)$ " approché par classification (à coût sensitif)

$$\min_{\pi \in \Pi \subset A^{X}} \sum_{x} \mu(x) \left(\max_{a} [T_{a}f](x) - [T_{\pi}f](x) \right)$$

Classification-based MPI

(Scherrer, Ghavamzadeh, Gabillon, Lesner, Geist, 2015)

$$"v_k \leftarrow (T_{\pi_k})^m v_{k-1} " "\pi_{k+1} \leftarrow \mathcal{G}[(T_{\pi_k})^m v_{k-1}] "$$

$$(m{v}_k)$$
 vivant dans $\mathcal{F}\subseteq \mathbb{R}^X$ (π_k) vivant dans $\Pi\subseteq A^X$

Erreur pour l'étape d'évaluation : ϵ_k

$$v_k \leftarrow (T_{\pi_k})^m v_{k-1} + \epsilon_k$$

Erreur pour l'étape gloutonne : ϵ'_k

$$\pi_{k+1}=\mathcal{G}_{\epsilon'_{k+1}}(\mathcal{T}_{\pi_k})^m v_{k-1},$$

où pour tout π ,

$$T_{\pi}(T_{\pi_k})^m v_{k-1} \leq T_{\pi_{k+1}}(T_{\pi_k})^m v_{k-1} + \epsilon'_k$$

Propagation des erreurs pour CBMPI

Theorème (Scherrer, Ghavamzadeh, Gabillon, Lesner, Geist, 2015) Après k itérations, la perte satisfait

$$egin{aligned} \| \mathbf{v}_* - \mathbf{v}_{\pi_k} \|_\infty &\leq rac{2 \, \gamma^{m} \, (\gamma - \gamma^{k-1})}{(1-\gamma)^2} \sup_{1 \leq j \leq k-1} \| \epsilon_j \|_\infty \ &+ rac{(1-\gamma^k)}{(1-\gamma)^2} \sup_{1 \leq j \leq k} \| \epsilon_j' \|_\infty + O(\gamma^k), \end{aligned}$$

- Généralise les bornes pour AVI (m = 1) et API $(m = \infty)$ de (Bertsekas & Tsitsiklis, 1996).
- *m* contrôle l'influence de l'erreur sur la fonction valeur.
- Résultats empiriques très bons sur Tetris (20.10⁶ lignes)

Plan de l'exposé

1 Complexité de Policy Iteration

2 Classification Based Modified Policy Iteration

3 Politiques non-stationnaires

④ Sur quelques schémas approchés de type PI

App. Value Iteration $\pi_{k+1} \leftarrow \mathcal{G}v_k$ $v_{k+1} \leftarrow Tv_k + \epsilon_k = T_{\pi_{k+1}}v_k + \epsilon_k$

App. Policy Iteration $\pi_{k+1} \leftarrow \mathcal{G}v_k$ $v_{k+1} \leftarrow v_{\pi_{k+1}} = (T_{\pi_{k+1}})^{\infty}v_k + \epsilon_k$

App. Modified Policy Iteration $\pi_{k+1} \leftarrow \mathcal{G}v_k$ $v_{k+1} \leftarrow (T_{\pi_{k+1}})^m v_k + \epsilon_k$ $(1 \le m \le \infty)$

Théorème (Singh & Yee, 1994; Gordon, 1995; Bertsekas & Tsitsiklis, 1996) (Scherrer, Ghavamzadeh, Gabillon, Lesner, Geist, 2015)

Supposons $\|\epsilon_k\|_{\infty} \leq \epsilon$. La *perte* satisfait

$$\limsup_{k\to\infty} \|\mathbf{v}_*-\mathbf{v}_{\pi_k}\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2}\epsilon.$$

1	2	3	4	

$$v_{\pi_k}(k) = \sum_{t=0}^{\infty} \gamma^t \left(-2\frac{\gamma - \gamma^k}{1 - \gamma} \epsilon \right) = -2\frac{\gamma - \gamma^k}{(1 - \gamma)^2} \epsilon \xrightarrow{k \to \infty} -\frac{2\gamma}{(1 - \gamma)^2} \epsilon$$

1	2	3	4	

$$v_{\pi_k}(k) = \sum_{t=0}^{\infty} \gamma^t \left(-2\frac{\gamma - \gamma^k}{1 - \gamma} \epsilon \right) = -2\frac{\gamma - \gamma^k}{(1 - \gamma)^2} \epsilon \stackrel{k \to \infty}{\longrightarrow} -\frac{2\gamma}{(1 - \gamma)^2} \epsilon$$

	1	2	3	4	
V_0	0	0	0	0	
V_1	$-\epsilon$	ϵ	0	0	
V_2	$-\gamma\epsilon$	$-\epsilon - \gamma \epsilon$	$\epsilon + \gamma \epsilon$	0	
V3	$-\gamma^2\epsilon$	$-\gamma^2\epsilon$	$-\epsilon - \gamma \epsilon - \gamma^2 \epsilon \epsilon + \gamma \epsilon + \gamma^2 \epsilon$		

$$v_{\pi_k}(k) = \sum_{t=0}^{\infty} \gamma^t \left(-2\frac{\gamma - \gamma^k}{1 - \gamma} \epsilon \right) = -2\frac{\gamma - \gamma^k}{(1 - \gamma)^2} \epsilon \stackrel{k \to \infty}{\longrightarrow} -\frac{2\gamma}{(1 - \gamma)^2} \epsilon$$

	1	2	3	4	
V ₀	0	0	0	0	
V_1	$-\epsilon$	ϵ	0	0	
V_2	$-\gamma\epsilon$	$-\epsilon - \gamma \epsilon$	$\epsilon + \gamma \epsilon$	0	
V3	$-\gamma^2\epsilon$	$-\gamma^2\epsilon$	$-\epsilon - \gamma \epsilon - \gamma^2 \epsilon \epsilon + \gamma \epsilon + \gamma^2 \epsilon$		

$$v_{\pi_k}(k) = \sum_{t=0}^{\infty} \gamma^t \left(-2\frac{\gamma - \gamma^k}{1 - \gamma} \epsilon \right) = -2\frac{\gamma - \gamma^k}{(1 - \gamma)^2} \epsilon \stackrel{k \to \infty}{\longrightarrow} -\frac{2\gamma}{(1 - \gamma)^2} \epsilon$$

	1	2	3	4	
V ₀	0	0	0	0	
<i>v</i> ₁	$-\epsilon$	ϵ	0	0	
V2	$-\gamma\epsilon$	$-\epsilon - \gamma \epsilon$	$\epsilon + \gamma \epsilon$	0	
V3	$-\gamma^2\epsilon$	$-\gamma^2\epsilon$	$-\epsilon - \gamma \epsilon - \gamma^2 \epsilon$	$\epsilon + \gamma \epsilon + \gamma^2 \epsilon$	

$$v_{\pi_k}(k) = \sum_{t=0}^{\infty} \gamma^t \left(-2\frac{\gamma - \gamma^k}{1 - \gamma} \epsilon \right) = -2\frac{\gamma - \gamma^k}{(1 - \gamma)^2} \epsilon \stackrel{k \to \infty}{\longrightarrow} -\frac{2\gamma}{(1 - \gamma)^2} \epsilon$$

	1	2	3	4	
V ₀	0	0	0 0		
<i>v</i> ₁	$-\epsilon$	ϵ	0	0	
V2	$-\gamma\epsilon$	$-\epsilon - \gamma \epsilon$	$\epsilon + \gamma \epsilon$	0	
V3	$-\gamma^2\epsilon$	$-\gamma^2\epsilon$	$-\epsilon - \gamma \epsilon - \gamma^2 \epsilon \epsilon + \gamma \epsilon + \gamma^2 \epsilon$		

Etat 2: $0 + \gamma(-\epsilon) = -2\gamma\epsilon + \gamma\epsilon$ Etat 3: $0 + \gamma(-\epsilon - \gamma\epsilon) = -2(\gamma + \gamma^2)\epsilon + \gamma(\epsilon + \gamma\epsilon)$

	1	2	3	4	
V ₀	0	0	0	0	
<i>v</i> ₁	$-\epsilon$	ϵ	0	0	
<i>V</i> ₂	$-\gamma\epsilon$	$-\epsilon - \gamma \epsilon$	$\epsilon + \gamma \epsilon$	0	
V3	$-\gamma^2\epsilon$	$-\gamma^2\epsilon$	$-\epsilon - \gamma \epsilon - \gamma^2 \epsilon$	$\epsilon + \gamma \epsilon + \gamma^2 \epsilon$	

Etat 2: $0 + \gamma(-\epsilon) = -2\gamma\epsilon + \gamma\epsilon$ Etat 3: $0 + \gamma(-\epsilon - \gamma\epsilon) = -2(\gamma + \gamma^2)\epsilon + \gamma(\epsilon + \gamma\epsilon)$

	1	2	3	4	
V ₀	0	0	0	0	
<i>v</i> ₁	$-\epsilon$	ϵ	0	0	
<i>v</i> ₂	$-\gamma\epsilon$	$-\epsilon - \gamma \epsilon$	$\epsilon + \gamma \epsilon$	0	
V3	$-\gamma^2\epsilon$	$-\gamma^2\epsilon$	$-\epsilon - \gamma \epsilon - \gamma^2 \epsilon \epsilon + \gamma \epsilon + \gamma^2 \epsilon$		

Etat 2: $0 + \gamma(-\epsilon) = -2\gamma\epsilon + \gamma\epsilon$ Etat 3: $0 + \gamma(-\epsilon - \gamma\epsilon) = -2(\gamma + \gamma^2)\epsilon + \gamma(\epsilon + \gamma\epsilon)$

	1	2	3	4	
V ₀	0	0	0	0	
<i>v</i> ₁	$-\epsilon$	ϵ	0	0	
<i>v</i> ₂	$-\gamma\epsilon$	$-\epsilon - \gamma \epsilon$	$\epsilon + \gamma \epsilon$	0	
<i>V</i> 3	$-\gamma^2\epsilon$	$-\gamma^2\epsilon$	$-\epsilon - \gamma \epsilon - \gamma^2 \epsilon \epsilon + \gamma \epsilon + \gamma^2$		

Etat 2: $0 + \gamma(-\epsilon) = -2\gamma\epsilon + \gamma\epsilon$ Etat 3: $0 + \gamma(-\epsilon - \gamma\epsilon) = -2(\gamma + \gamma^2)\epsilon + \gamma(\epsilon + \gamma\epsilon)$

	1	2	3	4	
V ₀	0	0	0	0	
<i>v</i> ₁	$-\epsilon$	ϵ	0	0	
<i>V</i> ₂	$-\gamma\epsilon$	$-\epsilon - \gamma \epsilon$	$\epsilon + \gamma \epsilon$	0	
<i>V</i> 3	$-\gamma^2\epsilon$	$-\gamma^2\epsilon$	$-\epsilon - \gamma \epsilon - \gamma^2 \epsilon$	$\epsilon + \gamma \epsilon + \gamma^2 \epsilon$	

Etat 2: $0 + \gamma(-\epsilon) = -2\gamma\epsilon + \gamma\epsilon$ Etat 3: $0 + \gamma(-\epsilon - \gamma\epsilon) = -2(\gamma + \gamma^2)\epsilon + \gamma(\epsilon + \gamma\epsilon)$

	1	2	3	4	
V ₀	0	0	0	0	
<i>v</i> ₁	$-\epsilon$	ϵ	0	0	
<i>V</i> ₂	$-\gamma\epsilon$	$-\epsilon - \gamma \epsilon$	$\epsilon + \gamma \epsilon$	0	
V ₃	$-\gamma^2\epsilon$	$-\gamma^2\epsilon$	$-\epsilon - \gamma \epsilon - \gamma^2 \epsilon \epsilon + \gamma \epsilon + \gamma^2 \epsilon$		

$$V_{\pi_k}(k) = \sum_{t=0}^{\infty} \gamma^t \left(-2 \frac{\gamma - \gamma^k}{1 - \gamma} \epsilon \right) = -2 \frac{\gamma - \gamma^k}{(1 - \gamma)^2} \epsilon \stackrel{k \to \infty}{\longrightarrow} - \frac{2\gamma}{(1 - \gamma)^2} \epsilon$$

Non-Stationary Value Iteration

AVI produit une séquence de valeurs/politiques ($\pi_{i+1} \in \mathcal{G}v_i$)

Idée: Utiliser la politique non-stationnaire périodique:

$$(\sigma_{k,\ell})^{\infty} = \underbrace{\pi_k \ \pi_{k-1} \ \cdots \ \pi_{k-\ell+1}}_{\sigma_{k,\ell}: \ \ell \ \text{dernières politiques}} \underbrace{\pi_k \ \pi_{k-1} \ \cdots \ \pi_{k-\ell+1}}_{\sigma_{k,\ell}: \ \ell \ \text{dernières politiques}} \ \cdots$$

Théorème (Scherrer & Lesner, 2012)

Supposons $\|\epsilon_k\|_{\infty} \leq \epsilon$. Pour tout ℓ , la perte satisfait

$$\limsup_{k\to\infty} \|v_*-v_{(\sigma_{k,\ell})^{\infty}}\|_{\infty} \leq \frac{2\gamma}{(1-\gamma^{\ell})(1-\gamma)}\epsilon.$$

Non-Stationary PI

NSPI(ℓ)

$$\pi_{k+1} \leftarrow \mathcal{G} v_k$$

 $v_{k+1} \leftarrow v_{(\sigma_{k+1,\ell})^{\infty}} + \epsilon_k \quad (\text{avec } v_{k+1} \simeq \mathcal{T}_{\sigma_{k+1,\ell}} v_{k+1})$

où $(\sigma_{0,\ell})^{\infty} = \pi_0 \pi_{-1} \dots \pi_{-\ell+1} \pi_0 \pi_{-1} \dots \pi_{-\ell+1} \dots$ est arbitraire et

$$\forall \mathbf{v}, \ T_{\sigma_{k,\ell}}\mathbf{v} = T_{\pi_k}T_{\pi_{k-1}}\ldots T_{\pi_{k-\ell+1}}\mathbf{v}.$$

Sortie en fonction de k: $(\sigma_0^{\ell})^{\infty} = (\pi_0 \ \pi_{-1} \ \dots \ \pi_{-\ell+2} \ \pi_{-\ell+1})^{\infty}$ $(\sigma_1^{\ell})^{\infty} = (\pi_1 \ \pi_0 \ \dots \ \pi_{-\ell+3} \ \pi_{-\ell+2})^{\infty}$ $(\sigma_2^{\ell})^{\infty} = (\pi_2 \ \pi_1 \ \dots \ \pi_{-\ell+4} \ \pi_{-\ell+3})^{\infty}$ $\vdots \qquad \vdots \qquad \vdots$ $(\sigma_k^{\ell})^{\infty} = (\pi_k \ \pi_{k-1} \ \dots \ \pi_{k-\ell+2} \ \pi_{k-\ell+1})^{\infty}$

Non-Stationary PI

NSPI(*l*)

 $\begin{aligned} \pi_{k+1} &\leftarrow \mathcal{G} \mathsf{v}_k \\ \mathsf{v}_{k+1} &\leftarrow \mathsf{v}_{(\sigma_{k+1,\ell})^\infty} + \epsilon_k \quad (\text{avec } \mathsf{v}_{k+1} \simeq \mathcal{T}_{\sigma_{k+1,\ell}} \mathsf{v}_{k+1}) \end{aligned}$

où $(\sigma_{0,\ell})^{\infty} = \pi_0 \ \pi_{-1} \ \dots \ \pi_{-\ell+1} \ \pi_0 \ \pi_{-1} \ \dots \ \pi_{-\ell+1} \ \dots$ est arbitraire et

$$\forall \mathbf{v}, \ T_{\sigma_{k,\ell}}\mathbf{v} = T_{\pi_k}T_{\pi_{k-1}}\ldots T_{\pi_{k-\ell+1}}\mathbf{v}.$$

Théorème (Scherrer & Lesner, 2012)

Supposons $\|\epsilon_k\|_{\infty} \leq \epsilon$. La perte satisfait

$$\limsup_{k\to\infty} \|v_*-v_{(\sigma_{k,\ell})^{\infty}}\|_{\infty} \leq \frac{2\gamma}{(1-\gamma^{\ell})(1-\gamma)}\epsilon.$$

Non Stationary Modified Policy Iteration

NS Value Iteration

 $\pi_{k+1} \leftarrow \frac{\mathcal{G}v_k}{v_{k+1}} \leftarrow T_{\pi_{k+1}}v_k + \epsilon_k$

NS Policy Iteration

 $\begin{aligned} \pi_{k+1} &\leftarrow \mathcal{G} v_k \\ v_{k+1} &\leftarrow (\mathcal{T}_{\sigma_{k+1,\ell}})^{\infty} \mathcal{T}_{\pi_{k+1}} v_k + \epsilon_k \end{aligned}$

NS Modified Policy Iteration

 $\pi_{k+1} \leftarrow \frac{\mathcal{G}v_k}{v_{k+1}} \leftarrow (\mathcal{T}_{\sigma_{k+1,\ell}})^m \mathcal{T}_{\pi_{k+1}} v_k + \epsilon_k$

 $(0 \le m \le \infty)$

Théorème (Lesner & Scherrer, 2015)

Supposons $\|\epsilon_k\|_{\infty} \leq \epsilon$. La perte satisfait

$$\limsup_{k \to \infty} \| \mathsf{v}_* - \mathsf{v}_{(\sigma_{k,\ell})^\infty} \|_\infty \leq \frac{2\gamma}{(1-\gamma^\ell)(1-\gamma)} \epsilon.$$

Confirmation empirique de l'analyse Optimalité de la constante $\frac{2\gamma}{(1-\gamma^{\ell})(1-\gamma)}$

Plan de l'exposé

- **1** Complexité de Policy Iteration
- **2** Classification Based Modified Policy Iteration
- **3** Politiques non-stationnaires
- **4** Sur quelques schémas approchés de type PI

Constantes de concentrabilité

• Les bornes de performances sont en fait (Munos, 2003; Munos & Szepesvári, 2008)

$$\limsup_{k\to\infty} \|v_* - v_{(\sigma_{k,\ell})^\infty}\|_{1,\nu} \leq \frac{2\mathcal{C}\gamma}{(1-\gamma^\ell)(1-\gamma)} \max_k \|\epsilon_k\|_{1,\mu}.$$

où

$$\boldsymbol{\mathcal{C}} = (1-\gamma)(1-\gamma^{\ell})\sum_{i=0}^{\infty}\sum_{j=0}^{\infty}\gamma^{i+j\ell}\boldsymbol{c}(i+j\ell+k)$$

et
$$c(i) = \max_{\pi_1, \pi_2, ..., \pi_i} \left\| \frac{\mu P_{\pi_1} P_{\pi_2} ... P_{\pi_i}}{\nu} \right\|_{1, \mu}.$$

Analyse (1/2) (Scherrer, 2014)

Algorithme	Perte e	n norme $I_{1,\mu}$		# Itér.	Mémoire
API	$C^{(2,1,0)}$ $C^{(1,0)}$	$\frac{\frac{1}{(1-\gamma)^2}}{\frac{1}{(1-\gamma)^2}}$	$\epsilon \epsilon \log \frac{1}{\epsilon}$	$\tfrac{1}{1-\gamma} \log \tfrac{1}{\epsilon}$	1
$\bar{API}(\bar{\alpha})$	$C^{(1,0)}$	$-\frac{1}{(1-\gamma)^2}$	ϵ	$ \overline{1} - \overline{\alpha} (1 - \gamma)$	$\log \frac{1}{\epsilon}$
$CPI(\alpha)$	C ^(1,0)	$\frac{1}{(1-\gamma)^3}$	ϵ	$\frac{1}{\alpha(1-\gamma)}$	$\log \frac{1}{\epsilon}$
CPI	$C^{(1,0)}$	$\frac{1}{(1-\gamma)^3}$	$\epsilon \log \frac{1}{\epsilon}$	$\frac{1}{1-\gamma}\frac{1}{\epsilon}$	$\log \frac{1}{\epsilon}$
_	C_{π_*}	$\frac{1}{(1-\gamma)^2}$	ϵ	e e	2
PSDP~	C_{π_*}	$\frac{1}{(1-\gamma)^2}$	$\epsilon \log \frac{1}{\epsilon}$	$\frac{1}{1-\gamma}$	$\log \frac{1}{\epsilon}$
	$C^{(1)}_{\pi_*}$	$\frac{1}{1-\gamma}$	ϵ	$\frac{1}{1-\gamma}$	$\log \frac{1}{\epsilon}$
	$C^{(2,\ell,0)}$	$\frac{1}{(1-\gamma)(1-\gamma^\ell)}$	ϵ	$\frac{1}{1-\gamma}\log \frac{1}{\epsilon}$	
NSPI(ℓ)	$\frac{C^{(1,0)}}{\ell}$	$rac{1}{(1-\gamma)^2(1-\gamma^\ell)}$	$\epsilon \log \frac{1}{\epsilon}$	$rac{1}{1-\gamma}\lograc{1}{\epsilon}$	l
	$C_{\pi_*}^{(1)} + \gamma^{\ell} \frac{C^{(2,\ell,m)}}{1-\gamma^{\ell}}$	$\frac{1}{1-\gamma}$	ϵ	$\frac{1}{1-\gamma}\log \frac{1}{\epsilon}$	
	$C_{\pi_*} + \gamma^{\ell} \frac{C^{(2,\ell,0)}}{\ell(1-\gamma^{\ell})}$	$\frac{1}{(1-\gamma)^2}$	$\epsilon \log \frac{1}{\epsilon}$	$\frac{1}{1-\gamma}\log \frac{1}{\epsilon}$	

CPI (Kakade & Langford, 2002), PSDP (Bagnell et al., 2003)

Analyse (2/2): Hiérarchie des constantes

 $A \rightarrow B$ ssi $\{B < \infty \Rightarrow A < \infty\}$

Analyse (1'/2)

Algorithme	Perte en norme $I_{1,\mu}$			# Itér.	Mémoire
API	$C^{(1,0)}$	$\frac{1}{(1-\gamma)^2}$	$\epsilon \log \frac{1}{\epsilon}$	$rac{1}{1-\gamma}\lograc{1}{\epsilon}$	1
CPI	C_{π_*}	$\frac{1}{(1-\gamma)^2}$	ϵ	$\frac{\dot{\gamma}}{\epsilon^2}$	
$PSDP_\infty$	C_{π_*}	$\frac{1}{(1-\gamma)^2}$	$\epsilon \log \frac{1}{\epsilon}$	$\frac{1}{1-\gamma}\lograc{1}{\epsilon}$	
$NSPI(\ell)$	$C_{\pi_*} + \gamma^\ell \frac{\mathcal{C}^{(2,\ell,0)}}{\ell(1-\gamma^\ell)}$	$\frac{1}{(1-\gamma)^2}$	$\epsilon \log \tfrac{1}{\epsilon}$	$rac{1}{1-\gamma}\lograc{1}{\epsilon}$	l

- CPI arbitrairement meilleur que API, mais avec exponentiellement plus d'itérations
- PSDP_∞ jouit du meilleur des deux mondes
- CPI et PSDP_∞ peuvent requérir beaucoup de mémoire
 ⇒ NSPI(ℓ) permet de faire un compromis qualité/mémoire

Confirmation empirique de l'analyse Existe-t-il un algorithme avec performance $\frac{C_{\pi_*}}{1-\infty}\epsilon$?

Analyse (1'/2)

Algorithme	Perte en norme $I_{1,\mu}$			# Itér.	Mémoire
API	$C^{(1,0)}$	$\frac{1}{(1-\gamma)^2}$	$\epsilon \log \frac{1}{\epsilon}$	$rac{1}{1-\gamma}\lograc{1}{\epsilon}$	1
CPI	C_{π_*}	$\frac{1}{(1-\gamma)^2}$	ϵ	$\frac{\dot{\gamma}}{\epsilon^2}$	
$PSDP_\infty$	C_{π_*}	$\frac{1}{(1-\gamma)^2}$	$\epsilon \log \frac{1}{\epsilon}$	$\frac{1}{1-\gamma}\lograc{1}{\epsilon}$	
$NSPI(\ell)$	$C_{\pi_*} + \gamma^\ell \frac{\mathcal{C}^{(2,\ell,0)}}{\ell(1-\gamma^\ell)}$	$\frac{1}{(1-\gamma)^2}$	$\epsilon \log \tfrac{1}{\epsilon}$	$rac{1}{1-\gamma}\lograc{1}{\epsilon}$	l

- CPI arbitrairement meilleur que API, mais avec exponentiellement plus d'itérations
- $\bullet\ \mathsf{PSDP}_\infty$ jouit du meilleur des deux mondes
- CPI et PSDP_∞ peuvent requérir beaucoup de mémoire
 ⇒ NSPI(ℓ) permet de faire un compromis qualité/mémoire

Confirmation empirique de l'analyse Existe-t-il un algorithme avec performance $\frac{C_{\pi_*}}{1-\gamma}\epsilon$?

References I

Akian, M., & Gaubert, S. 2013 (10).

Policy iteration for perfect information stochastic mean payoff games with bounded first return times is strongly polynomial. Tech. rept. arxiv 1310.4953v1.

Archibald, T., McKinnon, K., & Thomas, L. 1995.

On the generation of Markov decision processes. *Journal of the operational research society*, **46**, 354–361.

Bertsekas, D.P., & Tsitsiklis, J.N. 1996.

Neurodynamic Programming. Athena Scientific.

Fearnley, J. 2010.

Exponential lower bounds for policy iteration.

Pages 551-562 of: 37th international colloquium conference on automata, languages and programming: Part ii. ICALP'10. Berlin, Heidelberg: Springer-Verlag.

Gordon, G.J. 1995.

Stable function approximation in dynamic programming. Pages 261–268 of: International conference on machine learning.

Hansen, T.D., & Zwick, U. 2010.

Lower bounds for Howard's algorithm for finding minimum mean-cost cycles. Pages 415–426 of: Isaac (1).

References II

Hansen, T.D., Miltersen, P.B., & Zwick, U. 2013.

Strategy iteration is strongly polynomial for 2-player turn-based stochastic games with a constant discount factor.

J. acm, 60(1), 1:1-1:16.

Hollanders, R., Delvenne, J.C., & Jungers, R. 2012.

The complexity of policy iteration is exponential for discounted markov decision processes. In: leee conference on decision and control.

Hollanders, R., Gerenczér, B., Delvenne, J.C., & Jungers, R. 2015.

About upper bounds on the complexity of policy iteration. *Operations research letters.* To appear.

Lesner, B., & Scherrer, B. 2015 (July).

Non-Stationary Approximate Modified Policy Iteration. In: ICML 2015.

Melekopoglou, M., & Condon, A. 1994.

On the complexity of the policy improvement algorithm for Markov decision processes. Informs journal on computing, 6(2), 188–192.

Munos, R. 2003.

Error bounds for approximate policy iteration.

In: International Conference on Machine Learning.

Munos, R., & Szepesvári, Cs. 2008.

Finite-time bounds for fitted value iteration. *Journal of machine learning research*, **9**, 815–857.

References III

Post, I., & Ye, Y. 2012.

The simplex method is strongly polynomial for deterministic Markov decision processes. Tech. rept. arXiv:1208.5083v2.

Puterman, M. 1994. Markov Decision Processes. Wiley, New York.

Puterman, M., & Shin, M. 1978.

Modified policy iteration algorithms for discounted Markov decision problems. *Management science*, **24**(11).

Saad, Y. 2003.

Iterative methods for sparse linear systems, 2nd edition. Philadelpha, PA: SIAM.

Scherrer, B. 2014 (June).

Approximate Policy Iteration Schemes: A Comparison. In: ICML - 31st International Conference on Machine Learning - 2014.

Scherrer, B. 2016.

Improved and Generalized Upper Bounds on the Complexity of Policy Iteration. Mathematics of operations research. A paraître.

Scherrer, B., & Lesner, B. 2012 (Dec.).

On the use of non-stationary policies for stationary infinite-horizon Markov decision processes. In: Neural Information Processing Systems.

References IV

Schoknecht, R. 2002.

Optimality of reinforcement learning algorithms with linear function approximation. *Pages 1555–1562 of: Neural Information Processing Systems.*

Singh, S., & Yee, R. 1994.

An Upper Bound on the Loss from Approximate Optimal-Value Functions. *Machine learning*, **16-3**, 227–233.

Sutton, R.S., & Barto, A.G. 1998.

Reinforcement learning: An introduction. MIT Press.

Ye, Y. 2011.

The simplex and policy-iteration methods are strongly polynomial for the markov decision problem with a fixed discount rate.

Math. oper. res., 36(4), 593-603.

Yu, H., & Bertsekas, D.P. 2010.

Error bounds for approximations from projected linear equations. *Mathematics of operations research*, **35**(2), 306–329.

Illustration of approximation on Tetris

 Approximation architecture for the value and for the score (on which the policy is based)

$$\begin{split} f_{\theta}(x) &= \theta_{0} & \text{Constant} \\ &+ \theta_{1}h_{1}(x) + \theta_{2}h_{2}(x) + \dots + \theta_{10}h_{10}(x) & \text{column height} \\ &+ \theta_{11}\Delta h_{1}(x) + \theta_{12}\Delta h_{2}(x) + \dots + \theta_{19}\Delta h_{9}(x) & \text{height variation} \\ &+ \theta_{20}\max_{k}h_{k}(x) & \text{max height} \\ &+ \theta_{21}L(x) & \# \text{ holes} \end{split}$$

2 Sampling Scheme: play games

Projected Bellman Equation

• Solve $\hat{v}^{\pi} = \prod T^{\pi} \hat{v}^{\pi}$ instead of $v^{\pi} = T^{\pi} v^{\pi}$ (?)

 $\|\hat{v}^{\pi} - v^{\pi}\| \le \|\Pi_X\| \|v^{\pi} - \hat{v}_{best}\|$ (?)

- Revisit of the analyses of (Schoknecht, 2002) and (Yu & Bertsekas, 2010) in terms of **oblique projection** (Significant simplification)
- Connections with PDE Numerical Analysis (Saad, 2003)

• *v* is the unique solution of the **Bellman equation**:

$$\forall x, \ v(x) = r(x) + \gamma \sum_{y} p(y|x)v(y) \quad \Leftrightarrow \quad v_{\pi} = T v_{\pi}$$
$$\Leftrightarrow \quad v = r + \gamma P v \quad \Leftrightarrow \quad v = (I - \gamma P)^{-1} r.$$

• Equivalently, for all λ , v is the unique solution of

$$v = T_{\lambda} v \stackrel{\text{def}}{=} (1 - \lambda) \sum_{k=0}^{\infty} \lambda^{k} T^{k+1} v$$
$$= (I - \lambda \gamma P)^{-1} (r + (1 - \lambda) \gamma P v)$$

• Look for a linear approximation $\hat{v}(i) = \sum_{j=1}^{d} w_j \phi_j(i)$ or $\hat{v} = \Phi w$

$$\Phi = \begin{pmatrix} \phi(1)' \\ \vdots \\ \phi(N)' \end{pmatrix} = (\underbrace{\phi_1 \ \dots \ \phi_d}_{\text{linearly independent}}) \text{ and } w = \begin{pmatrix} w_1 \\ \vdots \\ w_d \end{pmatrix}$$

• *v* is the unique solution of the **Bellman equation**:

$$\forall x, \ v(x) = r(x) + \gamma \sum_{y} p(y|x)v(y) \quad \Leftrightarrow \quad v_{\pi} = T v_{\pi}$$
$$\Leftrightarrow \quad v = r + \gamma P v \quad \Leftrightarrow \quad v = (I - \gamma P)^{-1} r.$$

• Equivalently, for all λ , v is the unique solution of

$$\begin{aligned} \mathbf{v} &= T_{\lambda}\mathbf{v} \stackrel{\text{def}}{=} (1-\lambda) \sum_{k=0}^{\infty} \lambda^{k} \mathbf{T}^{k+1} \mathbf{v} \\ &= (I - \lambda \gamma P)^{-1} (r + (1-\lambda) \gamma P \mathbf{v}) \end{aligned}$$

• Look for a linear approximation $\hat{v}(i) = \sum_{j=1}^{d} w_j \phi_j(i)$ or $\hat{v} = \Phi w$

$$\Phi = \begin{pmatrix} \phi(1)' \\ \vdots \\ \phi(N)' \end{pmatrix} = (\underbrace{\phi_1 \ \dots \ \phi_d}_{\text{linearly independent}}) \text{ and } w = \begin{pmatrix} w_1 \\ \vdots \\ w_d \end{pmatrix}$$

• *v* is the unique solution of the **Bellman equation**:

$$\forall x, \ v(x) = r(x) + \gamma \sum_{y} p(y|x)v(y) \quad \Leftrightarrow \quad v_{\pi} = T v_{\pi}$$
$$\Leftrightarrow \quad v = r + \gamma P v \quad \Leftrightarrow \quad v = (I - \gamma P)^{-1} r.$$

• Equivalently, for all λ , v is the unique solution of

$$\begin{aligned} \mathbf{v} &= T_{\lambda} \mathbf{v} \stackrel{\text{def}}{=} (1 - \lambda) \sum_{k=0}^{\infty} \lambda^{k} \mathbf{T}^{k+1} \mathbf{v} \\ &= (I - \lambda \gamma P)^{-1} (r + (1 - \lambda) \gamma P \mathbf{v}) \end{aligned}$$

• Look for a linear approximation $\hat{v}(i) = \sum_{j=1}^{d} w_j \phi_j(i)$ or $\hat{v} = \Phi w$

$$\Phi = \begin{pmatrix} \phi(1)' \\ \vdots \\ \phi(N)' \end{pmatrix} = (\underbrace{\phi_1 \ \dots \ \phi_d}_{\text{linearly independent}}) \text{ and } w = \begin{pmatrix} w_1 \\ \vdots \\ w_d \end{pmatrix}$$

LSTD(λ) - Main result

Théorème

И

Let $\|\Phi\|_{\infty} \leq L$. Let ν be the smallest eigenvalue of $\Phi' D_{\mu} \Phi$. Let $X_1 \sim \mu$. Then, for all $\delta \in (0, 1)$, with probability at least $1 - \delta$, for all $n \geq n_0(\delta)$, A is invertible and:

$$\begin{aligned} \| \mathbf{v}_{\lambda} - \hat{\mathbf{v}}_{\lambda} \|_{\mu} &\leq \\ \frac{4V_{max}dL^2}{\sqrt{n-1}(1-\gamma)\nu} \sqrt{\left(1 + \left\lceil \frac{\log(n-1)}{\log\left(\frac{1}{\lambda\gamma}\right)} \right\rceil\right)} \sqrt{I(n-1,\delta)} + h(n,\delta) \end{aligned}$$

with $I(n,\delta) &= \tilde{O}\left(\log\left(\frac{1}{\delta}\right)\log(n)\right)^{\alpha}$ and $h(n,\delta) = \tilde{O}\left(\frac{\log\left(\frac{1}{\delta}\right)}{n}\right). \end{aligned}$

 $\nu > 0$ if the features are linearly independent.

 α depends on the $\beta\text{-mixing}$ properties of the process.

LSTD(λ) - Corollary

• The global error satisfies:

$$\begin{split} \|v - \hat{v}_{\lambda}\|_{\mu} &\leq \underbrace{\frac{1 - \lambda \gamma}{1 - \gamma} \|v - \Pi v\|_{\mu}}_{\text{approximation error}} + \\ \underbrace{\frac{4V_{\max} dL^2}{\sqrt{n - 1}(1 - \gamma)\nu} \sqrt{\left(1 + \left[\frac{\log(n - 1)}{\log\left(\frac{1}{\lambda\gamma}\right)}\right]\right) I(n - 1, \delta)} + h(n, \delta) \,. \end{split}_{\text{estimation error}}$$

- $\lambda = 1$ (resp. $\lambda = 0$) minimizes the approximation (resp. estimation) error
- When $n \to \infty$, the best value of λ tends to 1.

Tetris (10×20)

Courbes d'apprentissage pour Cross Entropy, DPI(=CBMPI avec $v_k = 0$) et CBMPI en utilisant $\simeq 20$ fonctions de base. 100 répétitions des algorithmes. $B_{DPI/CBMPI} = 32.10^6$ échantillons. $B_{CE} = 1700.10^6$ échantillons.

Optimalité de la borne (Lesner & Scherrer, 2015)

Pour tout m et ℓ , NSMPI produit une séquence de politiques $(\pi_k)_{k\geq 1}$ telles que π_k agit optimalement partout sauf en k. Ainsi, $(\sigma_{k,\ell})^{\infty} = (\pi_k \pi_{k-1} \dots \pi_{k-\ell+1})^{\infty}$ reste bloquée dans la boucle

$$k, k+\ell-1, k+\ell-2, k+1, k, \ldots$$

et par conséquent

$$\mathbf{v}_{(\sigma_{k,\ell})^{\infty}}(k) = -rac{2\gamma - \gamma^k}{(1 - \gamma^\ell)(1 - \gamma)}\epsilon$$

Illustration empirique

Figure: Erreur moyenne de la politique $(\sigma_{k,\ell})^{\infty}$ en fonction des itérations k. $\ell = 1$, $\ell = 2$, $\ell = 5$, $\ell = 10$.

Approximate/Conservative Policy Iteration

API

 $\pi_{k+1} \leftarrow \mathcal{G}_{\epsilon_k}(\nu, \mathsf{v}_{\pi_k})$

CPI/CPI+/CPI(α) (Kakade and Langford, 2002) $\pi_{k+1} \leftarrow (1 - \alpha_{k+1})\pi_k + \alpha_{k+1}\mathcal{G}_{\epsilon_k}(d_{\nu,\pi_k}, \mathsf{v}_{\pi_k})$

•
$$d_{\nu,\pi_k}(x') = (1-\gamma)\mathbb{E}_{x_0 \sim \nu} \left[\sum_{t=0}^{\infty} \gamma^t \mathbb{1}_{x_t = x'} \mid a_t = \pi_k(x_t) \right]$$

Approximate/Conservative Policy Iteration

API

 $\pi_{k+1} \leftarrow \mathcal{G}_{\epsilon_k}(\nu, \mathsf{v}_{\pi_k})$

CPI/CPI+/CPI(α) (Kakade and Langford, 2002) $\pi_{k+1} \leftarrow (1 - \alpha_{k+1})\pi_k + \alpha_{k+1}\mathcal{G}_{\epsilon_k}(d_{\nu,\pi_k}, \mathbf{v}_{\pi_k})$

•
$$d_{\nu,\pi_k}(x') = (1-\gamma)\mathbb{E}_{x_0 \sim \nu} \left[\sum_{t=0}^{\infty} \gamma^t \mathbb{1}_{x_t=x'} \mid a_t = \pi_k(x_t) \right]$$

Approximate/Conservative Policy Iteration

API

 $\pi_{k+1} \leftarrow \mathcal{G}_{\epsilon_k}(\nu, \mathsf{v}_{\pi_k})$

CPI/CPI+/CPI(α) (Kakade and Langford, 2002) $\pi_{k+1} \leftarrow (1 - \alpha_{k+1})\pi_k + \alpha_{k+1}\mathcal{G}_{\epsilon_k}(d_{\nu,\pi_k}, \mathbf{v}_{\pi_k})$

•
$$d_{\nu,\pi_k}(x') = (1-\gamma)\mathbb{E}_{x_0 \sim \nu} \left[\sum_{t=0}^{\infty} \gamma^t \mathbb{1}_{x_t = x'} \mid a_t = \pi_k(x_t) \right]$$

 $\begin{aligned} \mathsf{API}(\alpha) \ (\mathsf{Lagoudakis, 2003}) \\ \pi_{k+1} \leftarrow (1-\alpha)\pi_k + \alpha \mathcal{G}_{\epsilon_k}(\nu, \mathsf{v}_{\pi_k}) \end{aligned}$

PSDP_{∞} (variation de PSDP, Bagnell et al., 2003) $\pi_{k+1} \leftarrow \mathcal{G}_{\epsilon_k}(\nu, v_{\sigma_k})$

- $\sigma_k = \pi_k \ \pi_{k-1} \ \dots \ \pi_1$ est une politique à horizon $k \ (\sigma_0 = \emptyset)$
- $v_{\sigma_k} = T_{\pi_k} T_{\pi_{k-1}} \dots T_{\pi_1} 0$, $(v_{\sigma_0} = 0)$

• **Sortie**: On complète σ_k arbitrairement:

 $\sigma * = \pi_1 *$ (*=arbitraire)

PSDP_{∞} (variation de PSDP, Bagnell et al., 2003) $\pi_{k+1} \leftarrow \mathcal{G}_{\epsilon_k}(\nu, v_{\sigma_k})$

- $\sigma_k = \pi_k \ \pi_{k-1} \ \dots \ \pi_1$ est une politique à horizon $k \ (\sigma_0 = \emptyset)$
- $v_{\sigma_k} = T_{\pi_k} T_{\pi_{k-1}} \dots T_{\pi_1} 0$, $(v_{\sigma_0} = 0)$
- **Sortie**: On complète σ_k arbitrairement:

 $\sigma_1 * = \pi_1 *$ (*=arbitraire)

PSDP_{∞} (variation de PSDP, Bagnell et al., 2003) $\pi_{k+1} \leftarrow \mathcal{G}_{\epsilon_k}(\nu, v_{\sigma_k})$

- $\sigma_k = \pi_k \ \pi_{k-1} \ \dots \ \pi_1$ est une politique à horizon $k \ (\sigma_0 = \emptyset)$
- $v_{\sigma_k} = T_{\pi_k} T_{\pi_{k-1}} \dots T_{\pi_1} 0$, $(v_{\sigma_0} = 0)$
- **Sortie**: On complète σ_k arbitrairement:

 $\sigma_2 * = \pi_2 \pi_1 *$ (*=arbitraire)

PSDP_{∞} (variation de PSDP, Bagnell et al., 2003) $\pi_{k+1} \leftarrow \mathcal{G}_{\epsilon_k}(\nu, v_{\sigma_k})$

- $\sigma_k = \pi_k \ \pi_{k-1} \ \dots \ \pi_1$ est une politique à horizon $k \ (\sigma_0 = \varnothing)$
- $v_{\sigma_k} = T_{\pi_k} T_{\pi_{k-1}} \dots T_{\pi_1} 0$, $(v_{\sigma_0} = 0)$
- **Sortie**: On complète σ_k arbitrairement:

 $\sigma_3 * = \pi_3 \pi_2 \pi_1 * \qquad (*=arbitraire)$

PSDP_{∞} (variation de PSDP, Bagnell et al., 2003) $\pi_{k+1} \leftarrow \mathcal{G}_{\epsilon_k}(\nu, v_{\sigma_k})$

- $\sigma_k = \pi_k \ \pi_{k-1} \ \dots \ \pi_1$ est une politique à horizon $k \ (\sigma_0 = \emptyset)$
- $v_{\sigma_k} = T_{\pi_k} T_{\pi_{k-1}} \dots T_{\pi_1} 0$, $(v_{\sigma_0} = 0)$
- **Sortie**: On complète σ_k arbitrairement:

 $\sigma_4 * = \pi_4 \pi_3 \pi_2 \pi_1 *$ (*=arbitraire)

PSDP_{∞} (variation de PSDP, Bagnell et al., 2003) $\pi_{k+1} \leftarrow \mathcal{G}_{\epsilon_k}(\nu, v_{\sigma_k})$

- $\sigma_k = \pi_k \ \pi_{k-1} \ \dots \ \pi_1$ est une politique à horizon $k \ (\sigma_0 = \varnothing)$
- $v_{\sigma_k} = T_{\pi_k} T_{\pi_{k-1}} \dots T_{\pi_1} 0$, $(v_{\sigma_0} = 0)$
- **Sortie**: On complète σ_k arbitrairement:

 $\sigma_k * = \pi_k \pi_{k-1} \dots \pi_2 \pi_1 * \qquad (*= \text{arbitraire})$

PSDP_{∞} (variation de PSDP, Bagnell et al., 2003) $\pi_{k+1} \leftarrow \mathcal{G}_{\epsilon_k}(\nu, v_{\sigma_k})$

- $\sigma_k = \pi_k \ \pi_{k-1} \ \dots \ \pi_1$ est une politique à horizon $k \ (\sigma_0 = \emptyset)$
- $v_{\sigma_k} = T_{\pi_k} T_{\pi_{k-1}} \dots T_{\pi_1} 0$, $(v_{\sigma_0} = 0)$
- **Sortie**: On complète σ_k arbitrairement:

 $\sigma_k * = \pi_k \pi_{k-1} \dots \pi_2 \pi_1 * \qquad (*= \text{arbitraire})$

$\begin{aligned} & \mathsf{NSPI}(\ell) \\ & \pi_{k+1} \leftarrow \mathcal{G}_{\epsilon_k}(\nu, \mathsf{v}_{(\sigma_k^\ell)^\infty}) \end{aligned}$

• $(\sigma_k^\ell)^\infty = (\pi_k \ \pi_{k-1} \ \dots \ \pi_{k-\ell+1})^\infty$ est une politique de période ℓ

•
$$v_{(\sigma_k^\ell)^\infty} = T_{\pi_k} T_{\pi_{k-1}} \dots T_{\pi_{k-\ell+1}} v_{(\sigma_k^\ell)^\infty}$$

Intermédiaire entre API=NSPI(1) et PSDP $_{\infty} \simeq$ NSPI(∞).

$\begin{aligned} & \mathsf{NSPI}(\ell) \\ & \pi_{k+1} \leftarrow \mathcal{G}_{\epsilon_k}(\nu, \mathsf{v}_{(\sigma_k^\ell)^\infty}) \end{aligned}$

• $(\sigma_k^\ell)^\infty = (\pi_k \ \pi_{k-1} \ \dots \ \pi_{k-\ell+1})^\infty$ est une politique de période ℓ

•
$$v_{(\sigma_k^\ell)^\infty} = T_{\pi_k} T_{\pi_{k-1}} \dots T_{\pi_{k-\ell+1}} v_{(\sigma_k^\ell)^\infty}$$

Intermédiaire entre API=NSPI(1) et $\mathsf{PSDP}_\infty\simeq$ NSPI (∞) .

$\begin{aligned} & \mathsf{NSPI}(\ell) \\ & \pi_{k+1} \leftarrow \mathcal{G}_{\epsilon_k}(\nu, \mathsf{v}_{(\sigma_k^\ell)^\infty}) \end{aligned}$

• $(\sigma_k^\ell)^\infty = (\pi_k \ \pi_{k-1} \ \dots \ \pi_{k-\ell+1})^\infty$ est une politique de période ℓ

•
$$v_{(\sigma_k^\ell)^\infty} = T_{\pi_k} T_{\pi_{k-1}} \dots T_{\pi_{k-\ell+1}} v_{(\sigma_k^\ell)^\infty}$$

• Sortie:

$$(\sigma_0^{\ell})^{\infty} = (\pi_0 \ \pi_{-1} \ \dots \ \pi_{-\ell+2} \ \pi_{-\ell+1})^{\infty}$$
 $(\sigma_1^{\ell})^{\infty} = (\pi_1 \ \pi_0 \ \dots \ \pi_{-\ell+3} \ \pi_{-\ell+2})^{\infty}$
 $(\sigma_2^{\ell})^{\infty} = (\pi_2 \ \pi_1 \ \dots \ \pi_{-\ell+4} \ \pi_{-\ell+3})^{\infty}$
 \vdots
 $(\sigma_k^{\ell})^{\infty} = (\pi_k \ \pi_{k-1} \ \dots \ \pi_{k-\ell+2} \ \pi_{k-\ell+1})^{\infty}$

Intermédiaire entre API=NSPI(1) et $\mathsf{PSDP}_\infty\simeq$ NSPI (∞) .

$\begin{aligned} & \mathsf{NSPI}(\ell) \\ & \pi_{k+1} \leftarrow \mathcal{G}_{\epsilon_k}(\nu, \mathsf{v}_{(\sigma_k^\ell)^\infty}) \end{aligned}$

• $(\sigma_k^\ell)^\infty = (\pi_k \ \pi_{k-1} \ \dots \ \pi_{k-\ell+1})^\infty$ est une politique de période ℓ

•
$$v_{(\sigma_k^\ell)^\infty} = T_{\pi_k} T_{\pi_{k-1}} \dots T_{\pi_{k-\ell+1}} v_{(\sigma_k^\ell)^\infty}$$

Intermédiaire entre API=NSPI(1) et $\mathsf{PSDP}_\infty\simeq\mathsf{NSPI}(\infty).$

$\begin{aligned} & \mathsf{NSPI}(\ell) \\ & \pi_{k+1} \leftarrow \mathcal{G}_{\epsilon_k}(\nu, \mathsf{v}_{(\sigma_k^\ell)^\infty}) \end{aligned}$

• $(\sigma_k^\ell)^\infty = (\pi_k \ \pi_{k-1} \ \dots \ \pi_{k-\ell+1})^\infty$ est une politique de période ℓ

•
$$v_{(\sigma_k^\ell)^\infty} = T_{\pi_k} T_{\pi_{k-1}} \dots T_{\pi_{k-\ell+1}} v_{(\sigma_k^\ell)^\infty}$$

• Sortie:

$$(\sigma_0^{\ell})^{\infty} = (\pi_0 \ \pi_{-1} \ \dots \ \pi_{-\ell+2} \ \pi_{-\ell+1})^{\infty}$$
 $(\sigma_1^{\ell})^{\infty} = (\pi_1 \ \pi_0 \ \dots \ \pi_{-\ell+3} \ \pi_{-\ell+2})^{\infty}$
 $(\sigma_2^{\ell})^{\infty} = (\pi_2 \ \pi_1 \ \dots \ \pi_{-\ell+4} \ \pi_{-\ell+3})^{\infty}$
 \vdots
 $(\sigma_k^{\ell})^{\infty} = (\pi_k \ \pi_{k-1} \ \dots \ \pi_{k-\ell+2} \ \pi_{k-\ell+1})^{\infty}$

Intermédiaire entre API=NSPI(1) et $\mathsf{PSDP}_\infty\simeq$ NSPI (∞) .

$\begin{aligned} & \mathsf{NSPI}(\ell) \\ & \pi_{k+1} \leftarrow \mathcal{G}_{\epsilon_k}(\nu, \mathsf{v}_{(\sigma_k^\ell)^\infty}) \end{aligned}$

• $(\sigma_k^\ell)^\infty = (\pi_k \ \pi_{k-1} \ \dots \ \pi_{k-\ell+1})^\infty$ est une politique de période ℓ

•
$$v_{(\sigma_k^\ell)^\infty} = T_{\pi_k} T_{\pi_{k-1}} \dots T_{\pi_{k-\ell+1}} v_{(\sigma_k^\ell)^\infty}$$

Intermédiaire entre API=NSPI(1) et PSDP $_{\infty} \simeq$ NSPI(∞).

Analyse (2/2): Hiérarchie des constantes

where $\mu P_{\pi_1} P_{\pi_2} \dots P_{\pi_i} \leq c(i)\nu$ and $\mu(P_{\pi_*})^i \leq c_{\pi_*}(i)\nu$.

40 / 24

Simulations numériques

 $3^3 * 30 \simeq 800$ problèmes Garnet (Archibald *et al.*, 1995). Pour chaque problème, les algorithmes ont été lancés 30 fois.